Focusing and splitting streams of soft particles in microflows via viscosity gradients
- 47 Downloads
Abstract.
Microflows are intensively used for investigating and controlling the dynamics of particles, including soft particles such as biological cells and capsules. A classic result is the tank-treading motion of elliptically deformed soft particles in linear shear flows, which do not migrate across straight streamlines in the bulk. However, soft particles migrate across straight streamlines in Poiseuille flows. In this work we describe a new mechanism of cross-streamline migration by using soft capsules with a spherical equilibrium shape. If the viscosity varies perpendicular to the streamlines then the soft particles migrate across streamlines towards regions of a lower viscosity, even in linear shear flows. An interplay with the repulsive particle-boundary interaction causes then focusing of particles in linear shear flows with the attractor streamline closer to the wall in the low viscosity region. Viscosity variations perpendicular to the streamlines in Poiseuille flows leads either to a shift of the particle attractor or even to a splitting of particle attractors, which may give rise to interesting applications for particle separation. The location of attracting streamlines depend on the particle properties, like their size and elasticity. The cross-stream migration induced by viscosity variations is explained by analytical considerations, Stokesian dynamics simulations with a generalized Oseen tensor and lattice-Boltzmann simulations.
Graphical abstract
Keywords
Flowing Matter: Liquids and Complex FluidsSupplementary material
References
- 1.T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 978 (2005)CrossRefADSGoogle Scholar
- 2.A.S. Popel, P.C. Johnson, Annu. Rev. Fluid Mech. 37, 43 (2005)CrossRefADSGoogle Scholar
- 3.A. Karimi, S. Yazdi, A.M. Ardekani, Biomicrofluidics 7, 021501 (2013)CrossRefGoogle Scholar
- 4.J.B. Dahl, J.-M.G. Lin, S.J. Muller, S. Kumar, Annu. Rev. Chem. Biomol. Eng. 6, 293 (2015)CrossRefGoogle Scholar
- 5.H. Amini, W. Lee, D.D. Carlo, Lap Chip 14, 2739 (2014)CrossRefGoogle Scholar
- 6.T.W. Secomb, Annu. Rev. Fluid Mech. 49, 443 (2017)CrossRefADSMathSciNetGoogle Scholar
- 7.I. Cantat, C. Misbah, Phys. Rev. Lett. 83, 880 (1999)CrossRefADSGoogle Scholar
- 8.U. Seifert, Phys. Rev. Lett. 83, 876 (1999)CrossRefADSGoogle Scholar
- 9.M. Abkarian, C. Lartigue, A. Viallat, Phys. Rev. Lett. 88, 068102 (2002)CrossRefADSGoogle Scholar
- 10.X. Grandchamp et al., Phys. Rev. Lett. 110, 108101 (2013)CrossRefADSGoogle Scholar
- 11.L.G. Leal, Annu. Rev. Fluid Mech. 12, 435 (1980)CrossRefADSGoogle Scholar
- 12.S. Mandal, A. Bandopadhyay, S. Chakraborty, Phys. Rev. E 92, 023002 (2015)CrossRefADSMathSciNetGoogle Scholar
- 13.A. Helmy, D. Barthès-Biesel, J. Mec. Theor. Appl. 1, 859 (1982)Google Scholar
- 14.B. Kaoui et al., Phys. Rev. E 77, 021903 (2008)CrossRefADSGoogle Scholar
- 15.G. Coupier, B. Kaoui, T. Podgorski, C. Misbah, Phys. Fluids 20, 111702 (2008)CrossRefADSGoogle Scholar
- 16.S.K. Doddi, P. Bagchi, Int. J. Multiphase Flow 34, 966 (2008)CrossRefGoogle Scholar
- 17.A. Förtsch, M. Laumann, D. Kienle, W. Zimmermann, EPL 119, 64003 (2017)CrossRefADSGoogle Scholar
- 18.M. Schlenk et al., Lab Chip 18, 3163 (2018)CrossRefGoogle Scholar
- 19.G. D’Avino et al., Comput. Fluids 39, 709 (2010)CrossRefMathSciNetGoogle Scholar
- 20.D. Yuan et al., Lab Chip 18, 551 (2018)CrossRefGoogle Scholar
- 21.F. Del Giudice, S. Sathish, G. D’Avino, A.Q. Shen, Anal. Chem. 89, 13146 (2017)CrossRefGoogle Scholar
- 22.X. Lu, C. Liu, G. Hu, X. Xuan, J. Colloid Interf. Sci. 500, 182 (2017)CrossRefADSGoogle Scholar
- 23.M.A. Faridi et al., J. Nanobiotechnol. 15, 3 (2017)CrossRefGoogle Scholar
- 24.G. D’Avino, F. Greco, P.L. Maffettone, Annu. Rev. Fluid Mech. 49, 341 (2017)CrossRefADSGoogle Scholar
- 25.G. Segré, A. Silberberg, Nature 189, 209 (1961)CrossRefADSGoogle Scholar
- 26.G. Sekhon, R. Armstrong, M.S. Jhon, J. Polym. Sci., Polym. Phys. Ed. 20, 947 (1982)CrossRefADSGoogle Scholar
- 27.P.O. Brunn, Int. J. Multiphase Flow 187, 202 (1983)Google Scholar
- 28.M.S. Jhon, K.F. Freed, J. Polym. Sci.: Polym. Phys. 23, 255 (1985)Google Scholar
- 29.M. Laumann et al., EPL 117, 44001 (2017)CrossRefADSGoogle Scholar
- 30.I. Jo, Y. Huang, W. Zimmermann, E. Kanso, Phys. Rev. E 94, 063116 (2016)CrossRefADSGoogle Scholar
- 31.M. Laumann, A. Förtsch, E. Kanso, W. Zimmermann, New J. Phys. 21, 073012 (2019)CrossRefADSMathSciNetGoogle Scholar
- 32.V. Miralles, A. Huerre, F. Malloggi, M.-C. Jullien, Diagnostics 3, 33 (2013)CrossRefGoogle Scholar
- 33.J.K.G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, Amsterdam, 1996)Google Scholar
- 34.T. Krüger, F. Varnik, D. Raabe, Comput. Math. Appl. 61, 3485 (2011)CrossRefMathSciNetGoogle Scholar
- 35.S. Ramanujan, C. Pozrikidis, J. Fluid. Mech. 361, 117 (1998)CrossRefADSMathSciNetGoogle Scholar
- 36.D. Barthès-Biesel, Annu. Rev. Fluid Mech. 48, 25 (2016)CrossRefADSMathSciNetGoogle Scholar
- 37.G. Gompper, D.M. Kroll, J. Phys. I 6, 1305 (1996)Google Scholar
- 38.T. Krueger, M. Gross, D. Raabe, F. Varnik, Soft Matter 9, 9008 (2013)CrossRefADSGoogle Scholar
- 39.J. Kestin, J. Shankland, J. Non-Equilib. Thermodyn. 6, 241 (2009)ADSGoogle Scholar
- 40.S. Gupta, Viscosity of Water, in Viscometry for Liquids, Springer Series in Materials Science (Springer, Cham, 2014). Google Scholar
- 41.T. Krüger, The Lattice Boltzmann Method - Principles and Practice (Springer, Berlin, 2016)Google Scholar
- 42.P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)CrossRefADSGoogle Scholar
- 43.C.K. Aidun, J.R. Clausen, Annu. Rev. Fluid. Mech 42, 439 (2010)CrossRefADSGoogle Scholar
- 44.Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 65, 046308 (2002)CrossRefADSGoogle Scholar
- 45.C.S. Peskin, Acta Numer. 11, 479 (2002)CrossRefMathSciNetGoogle Scholar
- 46.C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, Cambridge, England, 1992)Google Scholar
- 47.J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)CrossRefADSGoogle Scholar
- 48.M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986)Google Scholar
- 49.R. Milo, R. Phillips, Cell Biology by the Numbers (Garland Science, New York, NY, 2016)Google Scholar
- 50.V. Telis, J. Telis-Romero, H. Mazzotti, A. Gabas, Int. J. Food Prop. 10, 185 (2007)CrossRefGoogle Scholar