Focusing and splitting streams of soft particles in microflows via viscosity gradients

  • Matthias Laumann
  • Walter ZimmermannEmail author
Regular Article


Microflows are intensively used for investigating and controlling the dynamics of particles, including soft particles such as biological cells and capsules. A classic result is the tank-treading motion of elliptically deformed soft particles in linear shear flows, which do not migrate across straight streamlines in the bulk. However, soft particles migrate across straight streamlines in Poiseuille flows. In this work we describe a new mechanism of cross-streamline migration by using soft capsules with a spherical equilibrium shape. If the viscosity varies perpendicular to the streamlines then the soft particles migrate across streamlines towards regions of a lower viscosity, even in linear shear flows. An interplay with the repulsive particle-boundary interaction causes then focusing of particles in linear shear flows with the attractor streamline closer to the wall in the low viscosity region. Viscosity variations perpendicular to the streamlines in Poiseuille flows leads either to a shift of the particle attractor or even to a splitting of particle attractors, which may give rise to interesting applications for particle separation. The location of attracting streamlines depend on the particle properties, like their size and elasticity. The cross-stream migration induced by viscosity variations is explained by analytical considerations, Stokesian dynamics simulations with a generalized Oseen tensor and lattice-Boltzmann simulations.

Graphical abstract


Flowing Matter: Liquids and Complex Fluids 

Supplementary material

10189_2019_11872_MOESM1_ESM.pdf (659 kb)
Supplementary material


  1. 1.
    T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 978 (2005)CrossRefADSGoogle Scholar
  2. 2.
    A.S. Popel, P.C. Johnson, Annu. Rev. Fluid Mech. 37, 43 (2005)CrossRefADSGoogle Scholar
  3. 3.
    A. Karimi, S. Yazdi, A.M. Ardekani, Biomicrofluidics 7, 021501 (2013)CrossRefGoogle Scholar
  4. 4.
    J.B. Dahl, J.-M.G. Lin, S.J. Muller, S. Kumar, Annu. Rev. Chem. Biomol. Eng. 6, 293 (2015)CrossRefGoogle Scholar
  5. 5.
    H. Amini, W. Lee, D.D. Carlo, Lap Chip 14, 2739 (2014)CrossRefGoogle Scholar
  6. 6.
    T.W. Secomb, Annu. Rev. Fluid Mech. 49, 443 (2017)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    I. Cantat, C. Misbah, Phys. Rev. Lett. 83, 880 (1999)CrossRefADSGoogle Scholar
  8. 8.
    U. Seifert, Phys. Rev. Lett. 83, 876 (1999)CrossRefADSGoogle Scholar
  9. 9.
    M. Abkarian, C. Lartigue, A. Viallat, Phys. Rev. Lett. 88, 068102 (2002)CrossRefADSGoogle Scholar
  10. 10.
    X. Grandchamp et al., Phys. Rev. Lett. 110, 108101 (2013)CrossRefADSGoogle Scholar
  11. 11.
    L.G. Leal, Annu. Rev. Fluid Mech. 12, 435 (1980)CrossRefADSGoogle Scholar
  12. 12.
    S. Mandal, A. Bandopadhyay, S. Chakraborty, Phys. Rev. E 92, 023002 (2015)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    A. Helmy, D. Barthès-Biesel, J. Mec. Theor. Appl. 1, 859 (1982)Google Scholar
  14. 14.
    B. Kaoui et al., Phys. Rev. E 77, 021903 (2008)CrossRefADSGoogle Scholar
  15. 15.
    G. Coupier, B. Kaoui, T. Podgorski, C. Misbah, Phys. Fluids 20, 111702 (2008)CrossRefADSGoogle Scholar
  16. 16.
    S.K. Doddi, P. Bagchi, Int. J. Multiphase Flow 34, 966 (2008)CrossRefGoogle Scholar
  17. 17.
    A. Förtsch, M. Laumann, D. Kienle, W. Zimmermann, EPL 119, 64003 (2017)CrossRefADSGoogle Scholar
  18. 18.
    M. Schlenk et al., Lab Chip 18, 3163 (2018)CrossRefGoogle Scholar
  19. 19.
    G. D’Avino et al., Comput. Fluids 39, 709 (2010)CrossRefMathSciNetGoogle Scholar
  20. 20.
    D. Yuan et al., Lab Chip 18, 551 (2018)CrossRefGoogle Scholar
  21. 21.
    F. Del Giudice, S. Sathish, G. D’Avino, A.Q. Shen, Anal. Chem. 89, 13146 (2017)CrossRefGoogle Scholar
  22. 22.
    X. Lu, C. Liu, G. Hu, X. Xuan, J. Colloid Interf. Sci. 500, 182 (2017)CrossRefADSGoogle Scholar
  23. 23.
    M.A. Faridi et al., J. Nanobiotechnol. 15, 3 (2017)CrossRefGoogle Scholar
  24. 24.
    G. D’Avino, F. Greco, P.L. Maffettone, Annu. Rev. Fluid Mech. 49, 341 (2017)CrossRefADSGoogle Scholar
  25. 25.
    G. Segré, A. Silberberg, Nature 189, 209 (1961)CrossRefADSGoogle Scholar
  26. 26.
    G. Sekhon, R. Armstrong, M.S. Jhon, J. Polym. Sci., Polym. Phys. Ed. 20, 947 (1982)CrossRefADSGoogle Scholar
  27. 27.
    P.O. Brunn, Int. J. Multiphase Flow 187, 202 (1983)Google Scholar
  28. 28.
    M.S. Jhon, K.F. Freed, J. Polym. Sci.: Polym. Phys. 23, 255 (1985)Google Scholar
  29. 29.
    M. Laumann et al., EPL 117, 44001 (2017)CrossRefADSGoogle Scholar
  30. 30.
    I. Jo, Y. Huang, W. Zimmermann, E. Kanso, Phys. Rev. E 94, 063116 (2016)CrossRefADSGoogle Scholar
  31. 31.
    M. Laumann, A. Förtsch, E. Kanso, W. Zimmermann, New J. Phys. 21, 073012 (2019)CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    V. Miralles, A. Huerre, F. Malloggi, M.-C. Jullien, Diagnostics 3, 33 (2013)CrossRefGoogle Scholar
  33. 33.
    J.K.G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, Amsterdam, 1996)Google Scholar
  34. 34.
    T. Krüger, F. Varnik, D. Raabe, Comput. Math. Appl. 61, 3485 (2011)CrossRefMathSciNetGoogle Scholar
  35. 35.
    S. Ramanujan, C. Pozrikidis, J. Fluid. Mech. 361, 117 (1998)CrossRefADSMathSciNetGoogle Scholar
  36. 36.
    D. Barthès-Biesel, Annu. Rev. Fluid Mech. 48, 25 (2016)CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    G. Gompper, D.M. Kroll, J. Phys. I 6, 1305 (1996)Google Scholar
  38. 38.
    T. Krueger, M. Gross, D. Raabe, F. Varnik, Soft Matter 9, 9008 (2013)CrossRefADSGoogle Scholar
  39. 39.
    J. Kestin, J. Shankland, J. Non-Equilib. Thermodyn. 6, 241 (2009)ADSGoogle Scholar
  40. 40.
    S. Gupta, Viscosity of Water, in Viscometry for Liquids, Springer Series in Materials Science (Springer, Cham, 2014). Google Scholar
  41. 41.
    T. Krüger, The Lattice Boltzmann Method - Principles and Practice (Springer, Berlin, 2016)Google Scholar
  42. 42.
    P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)CrossRefADSGoogle Scholar
  43. 43.
    C.K. Aidun, J.R. Clausen, Annu. Rev. Fluid. Mech 42, 439 (2010)CrossRefADSGoogle Scholar
  44. 44.
    Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 65, 046308 (2002)CrossRefADSGoogle Scholar
  45. 45.
    C.S. Peskin, Acta Numer. 11, 479 (2002)CrossRefMathSciNetGoogle Scholar
  46. 46.
    C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, Cambridge, England, 1992)Google Scholar
  47. 47.
    J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)CrossRefADSGoogle Scholar
  48. 48.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986)Google Scholar
  49. 49.
    R. Milo, R. Phillips, Cell Biology by the Numbers (Garland Science, New York, NY, 2016)Google Scholar
  50. 50.
    V. Telis, J. Telis-Romero, H. Mazzotti, A. Gabas, Int. J. Food Prop. 10, 185 (2007)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Theoretische Physik IUniversität BayreuthBayreuthGermany

Personalised recommendations