Advertisement

Electrical stimulation of developmental forces reveals the mechanism of limb formation in vertebrate embryos

  • Vincent FleuryEmail author
  • Ameya Vaishnavi Murukutla
Regular Article

Abstract.

Current knowledge on limbs development lacks a physical description of the forces leading to formation of the limbs precursors or “buds”. Earlier stages of development are driven by large scale morphogenetic movements, such as dipolar vortical flows and mechanical buckling, pulled by rings of cells. It is a natural hypothesis that similar phenomena occur during limb formation. However it is difficult to experiment on the developmental forces, in such a complex dynamic system. Here, we report a physical study of hindlimb bud formation in the chicken embryo. We use electrical stimulation to enhance the physical forces present in the tissue, prior to limb bud formation. By triggering the physical forces in a rapid and amplified pattern, we reveal the mechanism of formation of the hindlimbs: the early presumptive embryonic territory is composed of a set of rings encased like Russian dolls. Each ring constricts in an excitable pattern of force, and the limb buds are generated by folding at a pre-existing boundary between two rings, forming the dorsal and ventral ectoderms. The amniotic sac buckles at another boundary. Physiologically, the actuator of the excitable force is the tail bud pushing posteriorly along the median axis. The developmental dynamics suggests how animals may evolve by modification of the magnitude of these forces, within a common broken symmetry. On a practical level, localized electrical stimulation of morphogenetic forces opens the way to in vivo electrical engineering of tissues.

Graphical abstract

Keywords

Living systems: Biological Matter 

Supplementary material

Supplementary material

10189_2019_11869_MOESM2_ESM.avi (133.4 mb)
Supplementary material
10189_2019_11869_MOESM3_ESM.avi (1.3 mb)
Supplementary material

Supplementary material

10189_2019_11869_MOESM5_ESM.avi (21.7 mb)
Supplementary material
10189_2019_11869_MOESM6_ESM.avi (5.2 mb)
Supplementary material
10189_2019_11869_MOESM7_ESM.avi (35.2 mb)
Supplementary material
10189_2019_11869_MOESM8_ESM.avi (13 mb)
Supplementary material
10189_2019_11869_MOESM9_ESM.avi (19 mb)
Supplementary material
10189_2019_11869_MOESM10_ESM.avi (3.6 mb)
Supplementary material
10189_2019_11869_MOESM11_ESM.avi (14.3 mb)
Supplementary material
10189_2019_11869_MOESM12_ESM.avi (4.7 mb)
Supplementary material
10189_2019_11869_MOESM13_ESM.avi (28.6 mb)
Supplementary material
10189_2019_11869_MOESM14_ESM.avi (18 mb)
Supplementary material
10189_2019_11869_MOESM15_ESM.avi (28 mb)
Supplementary material
10189_2019_11869_MOESM16_ESM.avi (2.3 mb)
Supplementary material
10189_2019_11869_MOESM17_ESM.avi (2.2 mb)
Supplementary material
10189_2019_11869_MOESM18_ESM.avi (1.8 mb)
Supplementary material
10189_2019_11869_MOESM19_ESM.avi (2.2 mb)
Supplementary material
10189_2019_11869_MOESM20_ESM.avi (10.5 mb)
Supplementary material
10189_2019_11869_MOESM21_ESM.avi (4.7 mb)
Supplementary material
10189_2019_11869_MOESM22_ESM.avi (5.8 mb)
Supplementary material
10189_2019_11869_MOESM23_ESM.avi (25.2 mb)
Supplementary material
10189_2019_11869_MOESM24_ESM.pdf (3.2 mb)
Supplementary material

References

  1. 1.
    M.J. Cohn, J.C. Izpisua-Belmonte, H. Abud, J.K. Heath, C. Tickle, Cell 80, 739 (1995)CrossRefGoogle Scholar
  2. 2.
    H.V. Tanaka, N.Ch.Y. Ng, Z.Y. Yu, M.M. Casco-Robles, F. Mauro, P.A. Tsons, C. Chiba, Nat. Commun. 7, 11069 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    R.L. Johnson, C. Tabin, Cell 90, 979 (1997)CrossRefGoogle Scholar
  4. 4.
    M. Altabef, J.D. Clarke, C. Tickle, Development 124, 4547 (1997)Google Scholar
  5. 5.
    J.C. Casanova, V. Uribe, C. Badia-Careaga, G. Giovinazzo, M. Torres, J.J. Sanz-Ezquerro, Development 138, 1195 (2011)CrossRefGoogle Scholar
  6. 6.
    F.J. Nedelec, T. Surrey, A.C. Maggs, S. Leibler, Nature 389, 305 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    J. Lammerding, Comput. Physiol. 1, 783 (2011)Google Scholar
  8. 8.
    P.A. Janmey, C.A. McCulloch, Annu. Rev. Biomed. Eng. 9, 1 (2007)CrossRefGoogle Scholar
  9. 9.
    N. Bufi, P. Durand-Smet, A. Asnacios, Single-cell mechanics: The parallel plates technique, in Biophysical Methods in Cell Biology (Elsevier, Amsterdam, 2015) Chapt. 11Google Scholar
  10. 10.
    F. Graner, J.A. Glazier, Phys. Rev. Lett. 69, 2013 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    G.W. Brodland, D.I.-L. Chen, J.H. Veldhuis, Int. J. Plastic. 22, 965 (2006)CrossRefGoogle Scholar
  12. 12.
    M. Unbekandt, P.M. del Moral, F.G. Sala, S. Bellusci, D. Warburton, V. Fleury, Mech. Dev. 125, 314 (2008)CrossRefGoogle Scholar
  13. 13.
    T. Savin, N.A. Kurpios, A.E. Shyer, P. Florescu, H. Liang, L. Mahadevan, C.J. Tabin, Nature 476, 57 (2011)CrossRefGoogle Scholar
  14. 14.
    V. Fleury, Organogenesis 2, 6 (2005)CrossRefGoogle Scholar
  15. 15.
    E. Farge, Curr. Biol. 13, 1365 (2003)CrossRefGoogle Scholar
  16. 16.
    P.-L. Bardet, B. Guirao, C. Paoletti, F. Serman, V. Leopold, F. Bosveld, Y. Goya, V. Mirouse, F. Graner, Y. Bellaiche, Dev. Cell 25, 534 (2013)CrossRefGoogle Scholar
  17. 17.
    Z. Tang, Y. Hu, Z. Wang, K. Jiang, C. Zhan, W.F. Marshall, N. Tang, Dev. Cell 44, 13 (2018)CrossRefGoogle Scholar
  18. 18.
    F. Le Noble, D. Moyon, L. Pardanaud, L. Yuan, V. Djonov, R. Mattheijssen, C. Breant, V. Fleury, A. Eichmann, Development 131, 361 (2004)CrossRefGoogle Scholar
  19. 19.
    A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Cell 126, 677 (2006)CrossRefGoogle Scholar
  20. 20.
    D. Mitrossilis, J. Fouchard, D. Pereira, F. Postic, A. Richert, M. Saint-Jean, A. Asnacios, Proc. Natl. Acad. Sci. U.S.A. 107, 16518 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    V. Fleury, Biosystems 109, 460 (2012)CrossRefGoogle Scholar
  22. 22.
    V. Fleury, N. Chevalier, F. Furfaro, J.-L. Duband, Eur. Phys. J. E 38, 6 (2015)CrossRefGoogle Scholar
  23. 23.
    V. Fleury, A.V. Murukutla, N. Chevalier, B. Gallois, M. Capellazzi-Resta, P. Picquet, A. Peaucelle, Phys. Rev. E 94, 022426 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    O.P. Boryskina, A. Al-Kilani, V. Fleury, Eur. Phys. J. Appl. Phys. 55, 21101 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    V. Fleury, O.P. Boryskina, A. Al-Kilani, C. R. Acad. Sci. Biol. 334, 505 (2011)Google Scholar
  26. 26.
    E. Rozbicki, M. Chuai, A.I. Karjalainen, F. Song, H.M. Sang, R. Martin, H.J. Knölker, M.P. MacDonald, C.J. Weijer, Nat. Cell. Biol. 17, 397 (2015)CrossRefGoogle Scholar
  27. 27.
    N. Tipping, D. Wilson, Anat. Rec. 294, 1143 (2011)CrossRefGoogle Scholar
  28. 28.
    D.P. Kiehart, Curr. Biol. 9, R602 (1999)CrossRefGoogle Scholar
  29. 29.
    H.C. Lee, H.J. Choi, T.S. Park, S.I. Lee, Y.M. Kim, S. Rengaraj, H. Nagai, G. Sheng, J.M. Lim, J.Y. Han, PLoS ONE 8, e80631 (2016)CrossRefGoogle Scholar
  30. 30.
    V. Fleury, Chaos, Solitons Fractals 105, 230 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    E.B. Wilson, The Cell and Development in Heredity, third edition (Macmillan, New York, 1928)Google Scholar
  32. 32.
    T. Mikawa, A. Poh, K. Kelly, Y. Ishii, D. Reese, Dev. Dyn. 229, 422 (2004)CrossRefGoogle Scholar
  33. 33.
    V. Hamburger, H.L. Hamilton, J. Morphol. 88, 49 (1951)CrossRefGoogle Scholar
  34. 34.
    J.W. Valentine, Proc. Natl. Acad. Sci. U.S.A. 94, 8001 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    R. Wetzel, Vehr. Phys.-med. Ges. Würzburg 40, H.5 (1929)Google Scholar
  36. 36.
    R. Asai, Y. Haneda, D. Seya, Y. Arima, K. Fukda, Y. Kurihara, S. Miyagawa-Tomita, H. Kurihara, Sci. Rep. 7, 8955 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    M. Piccolino, Trends Neurosci. 20, 443 (1997)CrossRefGoogle Scholar
  38. 38.
    M. Levine, Mol. Biol. Cell 25, 835 (2014)Google Scholar
  39. 39.
    M. Louveaux, J.D. Julien, V. Mirabe, A. Boudaoud, O. Hamant, Proc. Natl. Acad. Sci. U.S.A. 26, 113 (2016)Google Scholar
  40. 40.
    Z. Kamran, K. Zellner, H. Kyriazes, C.M. Kraus, J.-B. Reynier, J.E. Malamy, BMC Dev. Biol. 17, 17 (2017)CrossRefGoogle Scholar
  41. 41.
    R. Keller, L. Davidson, A. Edlund, T. Elul, M. Ezin, D. Shook, P. Skoglund, Philos. Trans. R. Soc. London B: Biol. Sci. 355, 897 (2000)CrossRefGoogle Scholar
  42. 42.
    M. Popovic, A. Nandi, M. Merkel, R. Etournay, S. Eaton, F. Jülicher, G. Salbreux, New J. Phys. 19, 033006 (2017)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire Matière et Systèmes ComplexesUniversité Paris Diderot/UMR7057 CNRSParisFrance

Personalised recommendations