Advertisement

Stochastic dynamics of dissolving active particles

  • Alexander ChamollyEmail author
  • Eric Lauga
Open Access
Regular Article

Abstract.

The design of artificial microswimmers has generated significant research interest in recent years, for promise in applications such as nanomotors and targeted drug-delivery. However, many current designs suffer from a common problem, namely the swimmers remain in the fluid indefinitely, posing risks of clogging and damage. Inspired by recently proposed experimental designs, we investigate mathematically the dynamics of degradable active particles. We develop and compare two distinct chemical models for the decay of a swimmer, taking into account the material composition and nature of the chemical or enzymatic reaction at its surface. These include a model for dissolution without a reaction, as well as models for a reacting swimmer studied in the limit of large and small Damköhler number. A new dimensionless parameter emerges that allows the classification of colloids into ballistic and diffusive type. Using this parameter, we perform an asymptotic analysis to derive expressions for colloid lifetimes and their total mean squared displacement from release and validate these by numerical Monte Carlo simulations of the associated Langevin dynamics. Supported by general scaling relationships, our theoretical results provide new insight into the experimental applicability of a wide range of designs for degradable active colloids.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    J. Wang, W. Gao, ACS Nano 6, 5745 (2012)CrossRefGoogle Scholar
  2. 2.
    W. Wang, W. Duan, S. Ahmed, T.E. Mallouk, A. Sen, Nano Today 8, 531 (2013)CrossRefGoogle Scholar
  3. 3.
    B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Annu. Rev. Biomed. Eng. 12, 55 (2010)CrossRefGoogle Scholar
  4. 4.
    J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    J.L. Moran, J.D. Posner, Annu. Rev. Fluid Mech. 49, 511 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    E.M. Purcell, Am. J. Phys. 45, 3 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    S. Michelin, E. Lauga, J. Fluid Mech. 747, 572 (2014)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    R. Golestanian, T. Liverpool, A. Ajdari, New J. Phys. 9, 126 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    J.F. Brady, J. Fluid Mech. 667, 216 (2011)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Walther, A.H. Mueller, Chem. Rev. 113, 5194 (2013)CrossRefGoogle Scholar
  11. 11.
    S. Ebbens, D. Gregory, G. Dunderdale, J. Howse, Y. Ibrahim, T. Liverpool, R. Golestanian, EPL 106, 58003 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    W.F. Paxton, P.T. Baker, T.R. Kline, Y. Wang, T.E. Mallouk, A. Sen, J. Am. Chem. Soc. 128, 14881 (2006)CrossRefGoogle Scholar
  13. 13.
    J.L. Moran, J.D. Posner, J. Fluid Mech. 680, 31 (2011)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    G. Gallino, F. Gallaire, E. Lauga, S. Michelin, Adv. Funct. Mater. 28, 1800686 (2018)CrossRefGoogle Scholar
  15. 15.
    F. Mou, Y. Li, C. Chen, W. Li, Y. Yin, H. Ma, J. Guan, Small 11, 2564 (2015)CrossRefGoogle Scholar
  16. 16.
    W. Wang, L.A. Castro, M. Hoyos, T.E. Mallouk, ACS Nano 6, 6122 (2012)CrossRefGoogle Scholar
  17. 17.
    J.G. Gibbs, Y.P. Zhao, Appl. Phys. Lett. 94, 163104 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    S. Wang, N. Wu, Langmuir 30, 3477 (2014)CrossRefGoogle Scholar
  19. 19.
    L. Zhang, J.J. Abbott, L. Dong, K.E. Peyer, B.E. Kratochvil, H. Zhang, C. Bergeles, B.J. Nelson, Nano Lett. 9, 3663 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    A. Ghosh, P. Fischer, Nano Lett. 9, 2243 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    W. Gao, R. Dong, S. Thamphiwatana, J. Li, W. Gao, L. Zhang, J. Wang, ACS Nano 9, 117 (2015)CrossRefGoogle Scholar
  22. 22.
    C. Bächer, L. Schrack, S. Gekle, Phys. Rev. Fluids 2, 013102 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    A. Sauret, K. Somszor, E. Villermaux, E. Dressaire, Phys. Rev. Fluids 3, 104301 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    A.L. Fogelson, K.B. Neeves, Annu. Rev. Fluid Mech. 47, 377 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    W.S. Nesbitt, E. Westein, F.J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, S.P. Jackson, Nat. Med. 15, 665 (2009)CrossRefGoogle Scholar
  26. 26.
    C. Chen, E. Karshalev, J. Guan, J. Wang, Small 14, 1704252 (2018)CrossRefGoogle Scholar
  27. 27.
    C. Chen, E. Karshalev, J. Li, F. Soto, R. Castillo, I. Campos, F. Mou, J. Guan, J. Wang, ACS Nano 10, 10389 (2016)CrossRefGoogle Scholar
  28. 28.
    X. Wang, X.H. Qin, C. Hu, A. Terzopoulou, X.Z. Chen, T.Y. Huang, K. Maniura-Weber, S. Pané, B.J. Nelson, Adv. Funct. Mater. 28, 1804107 (2018)CrossRefGoogle Scholar
  29. 29.
    Y. Tu, F. Peng, A.A. Andree, Y. Men, M. Srinivas, D.A. Wilson, ACS Nano 11, 1957 (2017)CrossRefGoogle Scholar
  30. 30.
    A.W. Woods, J. Fluid Mech. 239, 429 (1992)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Y. Zhang, D. Walker, C.E. Lesher, Contrib. Mineral. Petrol. 102, 492 (1989)ADSCrossRefGoogle Scholar
  32. 32.
    R.C. Kerr, Contrib. Mineral. Petrol. 121, 237 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    W.M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, 2014)Google Scholar
  34. 34.
    S. Michelin, E. Guérin, E. Lauga, Phys. Rev. Fluids 3, 043601 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    H. Carslaw, J. Jaeger, Conduction of Heat in Solids, 2nd edition (Clarendon Press, Oxford, 1959) p. 75Google Scholar
  36. 36.
    A. Einstein, Ann. Phys. 17, 549 (1905)CrossRefGoogle Scholar
  37. 37.
    Z. Li, Phys. Rev. E 80, 061204 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    M. Tatulea-Codrean, E. Lauga, J. Fluid Mech. 856, 921 (2018)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK

Personalised recommendations