Advertisement

On the thermodiffusion effect in vertical plate heat exchangers

  • Peru Fernandez de ArroiabeEmail author
  • Asier Martinez-Urrutia
  • Xabier Peña
  • Manex Martinez-Agirre
  • M. Mounir Bou-Ali
Regular Article
Part of the following topical collections:
  1. Thermal Non-Equilibrium Phenomena in Soft Matter

Abstract.

The subject of the transport phenomena has a pivotal role in the performance of aqueous lithium bromide falling film absorbers. Although the thermodiffusion phenomenon appears inside the solution, very little is known about its influence on the mass transport. This study numerically analyses the influence of the thermal mass transfer mechanism on a vertical plate-type heat exchanger for different Reynolds numbers (\( 14\leq {\rm Re} \leq 150\)). Results indicate that, in general, the mass transfer caused by the temperature gradient enhances the total absorption because of the negative Soret coefficient of the salt solution. This improvement is found to be higher at higher Reynolds numbers. Furthermore, the concentration and temperature profiles and, therefore, the absorption change significantly along the flow length. Overall, this analysis assists the understanding of the role of the thermal mechanism in this type of absorbers and it demonstrates that it should be considered in future studies.

Graphical abstract

Keywords

Topical issue: Thermal Non-Equilibrium Phenomena in Soft Matter 

References

  1. 1.
    F. Kesicki, A. Yanagisawa, Energy Effic. 8, 155 (2014)CrossRefGoogle Scholar
  2. 2.
    C. Forman, I.K. Muritala, R. Pardemann, B. Meyer, Renew. Sustain. Energy Rev. 57, 1568 (2016)CrossRefGoogle Scholar
  3. 3.
    P. Donnellan, K. Cronin, E. Byrne, Renew. Sustain. Energy Rev. 42, 1290 (2015)CrossRefGoogle Scholar
  4. 4.
    A.B. Little, S. Garimella, Energy 36, 4492 (2011)CrossRefGoogle Scholar
  5. 5.
    I. Horuz, B. Kurt, Renew. Energy 35, 2175 (2010)CrossRefGoogle Scholar
  6. 6.
    A. Beutler, I. Greiter, A. Wagner, L. Hoffmann, S. Schreier, G. Alefeld, Int. J. Refrig. 19, 342 (1996)CrossRefGoogle Scholar
  7. 7.
    J.D. Killion, S. Garimella, Int. J. Refrig. 24, 755 (2001)CrossRefGoogle Scholar
  8. 8.
    J. Ibarra-Bahena, R.J. Romero, L. Velazquez-Avelar, C.V. Valdez-Morales, Y.R. Galindo-Luna, Exp. Therm. Fluid Sci. 51, 257 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Jeong, S. Garimella, HVAC&R Res. 11, 27 (2005)  https://doi.org/10.1080/10789669.2005.10391124
  10. 10.
    N.I. Grigoryeva, V.E. Nakoryakov, J. Eng. Phys. 33, 1349 (1977) (English Translation of Inzhenerno-Fizicheskii Zhurnal)CrossRefGoogle Scholar
  11. 11.
    G. Grossman, Int. J. Heat Mass Transfer 26, 357 (1983)CrossRefGoogle Scholar
  12. 12.
    J.I. Yoon, T.T. Phan, C.G. Moon, P. Bansal, Appl. Therm. Eng. 25, 2219 (2005)CrossRefGoogle Scholar
  13. 13.
    S. Bo, X. Ma, H. Chen, Z. Lan, Heat Mass Transfer 47, 1611 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    E. Hofmann, H.C. Kuhlmann, Int. J. Heat Mass Transfer 55, 7686 (2012)CrossRefGoogle Scholar
  15. 15.
    M. Mittermaier, P. Schulze, F. Ziegler, Int. J. Heat Mass Transfer 70, 990 (2014)CrossRefGoogle Scholar
  16. 16.
    V.M. Soto Francés, J.M. Pinazo Ojer, Int. J. Heat Mass Transfer 46, 3299 (2003)CrossRefGoogle Scholar
  17. 17.
    P. Fernandez de Arroiabe, A. Martinez-Urrutia, X. Peña, M. Martinez-Agirre, M.M. Bou-Ali, Int. J. Refrig. 90, 12 (2018)CrossRefGoogle Scholar
  18. 18.
    A. Martinez-Urrutia, P.F. de Arroiabe, M. Ramirez, M. Martinez-Agirre, M. Mounir Bou-Ali, Int. J. Refrig. 95, 182 (2018)CrossRefGoogle Scholar
  19. 19.
    J. Colombani, J. Bert, J. Dupuy-Philon, J. Chem. Phys. 110, 8622 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    S.M. Hosseinnia, M. Naghashzadegan, R. Kouhikamali, Int. J. Therm. Sci. 114, 123 (2017)CrossRefGoogle Scholar
  21. 21.
    W. Nusselt, Z. Ver. Deutsch. Ing. 60, 541 (1916)Google Scholar
  22. 22.
    C.W. Hirt, B.D. Nichols, J. Comput. Phys. 39, 201 (1981)ADSCrossRefGoogle Scholar
  23. 23.
    J.K. Platten, J. Appl. Mech. 73, 5 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Z. Yuan, K.E. Herold, HVAC&R Res. 11, 377 (2005)  https://doi.org/10.1080/10789669.2005.10391144
  25. 25.
    B. Ziegler, C. Trepp, Int. J. Refrig. 7, 101 (1984)CrossRefGoogle Scholar
  26. 26.
    T. Meyer, Int. J. Heat Mass Transfer 80, 802 (2015)CrossRefGoogle Scholar
  27. 27.
    P. Sultana, N.E. Wijeysundera, J.C. Ho, C. Yap, Int. J. Refrig. 30, 709 (2007)CrossRefGoogle Scholar
  28. 28.
    M.M. Bou-Ali, O. Ecenarro, J.A. Madariaga, C.M. Santamaría, J.J. Valencia, Phys. Rev. E 59, 1250 (1999)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Peru Fernandez de Arroiabe
    • 1
    Email author
  • Asier Martinez-Urrutia
    • 2
  • Xabier Peña
    • 2
  • Manex Martinez-Agirre
    • 1
  • M. Mounir Bou-Ali
    • 1
  1. 1.Mondragon Unibertsitatea, Faculty of Engineering, Mechanical and Industrial ProductionMondragon, GipuzkoaSpain
  2. 2.Tecnalia, Energy and Environment DivisionAzpeitia, GipuzkoaSpain

Personalised recommendations