Advertisement

Inversion of thermodiffusive properties of ionic colloidal dispersions in water-DMSO mixtures probed by forced Rayleigh scattering

  • M. Sarkar
  • J. C. Riedl
  • G. Demouchy
  • F. Gélébart
  • G. Mériguet
  • V. Peyre
  • E. Dubois
  • R. PerzynskiEmail author
Regular Article
Part of the following topical collections:
  1. Thermal Non-Equilibrium Phenomena in Soft Matter

Abstract.

Thermodiffusion properties at room temperature of colloidal dispersions of hydroxyl-coated nanoparticles (NPs) are probed in water, in dimethyl sulfoxide (DMSO) and in mixtures of water and DMSO at various proportions of water, \( x_{\rm W}\). In these polar solvents, the positive NPs superficial charge imparts the systems with a strong electrostatic interparticle repulsion, slightly decreasing from water to DMSO, which is here probed by Small Angle Neutron Scattering and Dynamic Light Scattering. However if submitted to a gradient of temperature, the NPs dispersed in water with ClO4- counterions present a thermophilic behavior, the same NPs dispersed in DMSO with the same counterions present a thermophobic behavior. Mass diffusion coefficient \( D_{\rm m}\) and Ludwig-Soret coefficient \( S_{\rm T}\) are measured as a function of NP volume fraction \(\Phi\) at various \( x_{\rm W}\). The \(\Phi\)-dependence of \( S_{{\rm T}}\) is analyzed in terms of thermoelectric and thermophoretic contributions as a function of \( x_{\rm W}\). Using two different models for evaluating the Eastman entropy of transfer of the co- and counterions in the mixtures, the single-particle thermophoretic contribution (the NP's Eastman entropy of transfer) is deduced. It is found to evolve from negative in water to positive in DMSO. It is close to zero on a large range of \( x_{\rm W}\) values, meaning that in this \( x_{\rm W}\)-range \( S_{\rm T}\) largely depends on the thermoelectric effect of free co- and counterions.

Graphical abstract

Keywords

Topical issue: Thermal Non-Equilibrium Phenomena in Soft Matter 

Supplementary material

10189_2019_11835_MOESM1_ESM.pdf (594 kb)
Inversion of thermodiffusive properties of ionic colloidal dispersions in water-DMSO mixtures probed by forced Rayleigh scattering

References

  1. 1.
    C. Soret, Arch. Sci. Phys. Nat. Genève 3, 48 (1879)Google Scholar
  2. 2.
    S.A. Putnam, D.G. Cahill, Langmuir 21, 5317 (2005)CrossRefGoogle Scholar
  3. 3.
    C. Goupil, W. Seifert, K. Zabrocki, E. Müller, G. Snyder, Entropy 13, 1481 (2011)CrossRefGoogle Scholar
  4. 4.
    R. Hu, B. Cola, N. Haram, J. Barisci, S. Lee, S. Stougton, G. Wallace, C. Too, M. Thomas, A. Gestos, M. dela Cruz, J. Ferraris, A. Zakhidov, R. Baughman, Nano Lett. 10, 838 (2010)CrossRefGoogle Scholar
  5. 5.
    V. Zinovyeva, S. Nakamae, M. Bonetti, M. Roger, ChemElectroChem 1, 426 (2014)CrossRefGoogle Scholar
  6. 6.
    B.T. Huang, M. Roger, M. Bonetti, T.J. Salez, C. Wiertel-Gasquet, E. Dubois, R.C. Gomes, G. Demouchy, G. Mériguet, V. Peyre, M. Kouyaté, C.L. Filomeno, J. Depeyrot, F.A. Tourinho, R. Perzynski, S. Nakamae, J. Chem. Phys. 143, 054902 (2015)CrossRefGoogle Scholar
  7. 7.
    T.J. Salez, B.T. Huang, M. Rietjens, M. Bonetti, C. Wiertel-Gasquet, M. Roger, C.L. Filomeno, E. Dubois, R. Perzynski, S. Nakamae, Phys. Chem. Chem. Phys. 19, 9409 (2017)CrossRefGoogle Scholar
  8. 8.
    M. Dupont, D. MacFarlane, J. Pringle, Chem. Commun. 53, 6288 (2017)CrossRefGoogle Scholar
  9. 9.
    D. Al-Masri, M. Dupont, R. Yunis, D.R. MacFarlane, J.M. Pringle, Electrochim. Acta 269, 714 (2018)CrossRefGoogle Scholar
  10. 10.
    T.J. Salez, S. Nakamae, R. Perzynski, G. Mériguet, A. Cebers, M. Roger, Entropy 20, 405 (2018)CrossRefGoogle Scholar
  11. 11.
    J.N. Agar, C.Y. Mou, J.L. Lin, J. Phys. Chem. 93, 2079 (1989)CrossRefGoogle Scholar
  12. 12.
    A. Würger, Phys. Rev. Lett. 101, 108302 (2008)CrossRefGoogle Scholar
  13. 13.
    A. Majee, A. Würger, Phys. Rev. E 83, 061403 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Majee, Effet thermoélectrique dans les dispersions collo\"idale, PhD Thesis, Université Bordeaux I (2012)Google Scholar
  15. 15.
    M. Reichl, M. Herzog, A. Gotz, D. Braun, Phys. Rev. Lett. 112, 198101 (2014)CrossRefGoogle Scholar
  16. 16.
    R. Cabreira-Gomes, A.F. da Silva, M. Kouyaté, G. Demouchy, G. Mériguet, R. Aquino, E. Dubois, S. Nakamae, M. Roger, J. Depeyrot, R. Perzynski, Phys. Chem. Chem. Phys. 20, 16402 (2018)CrossRefGoogle Scholar
  17. 17.
    M. Kouyaté, C. Filomeno, G. Demouchy, G. Mériguet, S. Nakamae, V. Peyre, M. Roger, A. Cebers, J. Depeyrot, E. Dubois, R. Perzynski, Phys. Chem. Chem. Phys. 4, 1895 (2019)CrossRefGoogle Scholar
  18. 18.
    C.L. Filomeno, M. Kouyaté, F. Cousin, G. Demouchy, E. Dubois, L. Michot, G. Mériguet, R. Perzynski, V. Peyre, J. Sirieix-Plénet, F.A. Tourinho, J. Magn. & Magn. Mater. 431, 2 (2017)CrossRefGoogle Scholar
  19. 19.
    C.L. Filomeno, M. Kouyaté, V. Peyre, G. Demouchy, A.F.C. Campos, R. Perzynski, F.A. Tourinho, E. Dubois, J. Phys. Chem. C 121, 5539 (2017)CrossRefGoogle Scholar
  20. 20.
    Y. Marcus, Chem. Rev. 109, 1346 (2009)CrossRefGoogle Scholar
  21. 21.
    I. Plowas, J. Swiergiel, J. Jadzyn, J. Chem. Eng. Data 59, 2360 (2014)CrossRefGoogle Scholar
  22. 22.
    J. Kiefer, K. Noack, B. Kirchner, Curr. Phys. Chem. 1, 340 (2011)CrossRefGoogle Scholar
  23. 23.
    D. Rasmussen, A.M. Kenzie, Nature 220, 1315 (1968)CrossRefGoogle Scholar
  24. 24.
    J. Cowie, P. Toporowski, Can. J. Chem. 39, 2240 (1961)CrossRefGoogle Scholar
  25. 25.
    R. LeBel, D. Goring, J. Chem. Eng. Data 7, 100 (1962)CrossRefGoogle Scholar
  26. 26.
    C. Nieto-Draghi, J.B. Avalos, B. Rousseau, J. Chem. Phys. 119, 4782 (2003)CrossRefGoogle Scholar
  27. 27.
    H. Zhang, G. Zhao, H. Ye, X. Ge, S. Cheng, Meas. Sci. Technol. 16, 1430 (2005)CrossRefGoogle Scholar
  28. 28.
    J.-C. Zhou, Y.-Y. Che, K.-J. Wu, J. Shen, C.H. He, J. Chem. Eng. Data 58, 663 (2013)CrossRefGoogle Scholar
  29. 29.
    U. Kaatze, R. Pottel, M. Schafer, J. Phys. Chem. 93, 5623 (1989)CrossRefGoogle Scholar
  30. 30.
    A. Luzar, J. Mol. Liq. 46, 221 (1990)CrossRefGoogle Scholar
  31. 31.
    Y. Doucet, F. Calmes-Perrault, M.-T. Durand, C. R. Acad. Sci. Paris 260, 1878 (1965)Google Scholar
  32. 32.
    M. Skaf, J. Phys. Chem. A 103, 10719 (1999)CrossRefGoogle Scholar
  33. 33.
    S.M. Kashid, G.Y. Jin, S. Chakrabarty, Y.S. Kim, S. Bagchi, J. Phys. Chem. Lett. 8, 1604 (2017)CrossRefGoogle Scholar
  34. 34.
    K. Oh, K. Rajesh, J. Stanton, C. Baiz, Angew. Chem. Int. Ed. 56, 11375 (2017)CrossRefGoogle Scholar
  35. 35.
    A.K. Soper, A. Luzar, J. Chem. Phys. 97, 1320 (1992)CrossRefGoogle Scholar
  36. 36.
    A. Perera, R. Mazighi, J. Chem. Phys. 143, 154502 (2015)CrossRefGoogle Scholar
  37. 37.
    S. Banerjee, S. Roy, B. Bagchi, J. Phys. Chem. B 114, 12875 (2010)CrossRefGoogle Scholar
  38. 38.
    S. Roy, B. Bagchi, J. Chem. Phys. 139, 034308 (2013)CrossRefGoogle Scholar
  39. 39.
    R. Massart, C. R. Acad. Sci. Paris, Ser. C 291, 1 (1980)Google Scholar
  40. 40.
    R. Massart, IEEE Trans. Magn. 17, 1247 (1981)CrossRefGoogle Scholar
  41. 41.
    J.A. Gomes, M.H. Sousa, F.A. Tourinho, R. Aquino, G.J. da Silva, J. Depeyrot, E. Dubois, R. Perzynski, J. Phys. Chem. C 112, 6220 (2008)CrossRefGoogle Scholar
  42. 42.
    R. Massart, E. Dubois, V. Cabuil, E. Hasmonay, J. Magn. & Magn. Mater. 149, 1 (1995)CrossRefGoogle Scholar
  43. 43.
    B. Berkovski (Editor), Magnetic Fluids and Applications Handbook (Begell House Inc. Publ., New York, 1996)Google Scholar
  44. 44.
    E. Wandersman, A. Cebers, E. Dubois, G. Mériguet, A. Robert, R. Perzynski, Soft Matter 9, 11480 (2013)CrossRefGoogle Scholar
  45. 45.
    N.F. Carnahan, K.E. Starling, J. Chem. Phys. 53, 600 (1970)CrossRefGoogle Scholar
  46. 46.
    J.A. Barker, D. Henderson, J. Chem. Phys. 47, 4714 (1967)CrossRefGoogle Scholar
  47. 47.
    Y. Nagasaka, T. Hatakeyama, M. Osuka, A. Nagashima, Rev. Sci. Instrum. 59, 1156 (1988)CrossRefGoogle Scholar
  48. 48.
    G. Demouchy, A. Mezulis, A. Bée, D. Talbot, J.-C. Bacri, A. Bourdon, J. Phys. D: Appl. Phys. 37, 1417 (2004)CrossRefGoogle Scholar
  49. 49.
    R. Piazza, A. Parola, J. Phys.: Condens. Matter 20, 153102 (2008)Google Scholar
  50. 50.
    J. Burelbach, D. Frenkel, I. Pagonabarraga, E. Eiser, Eur. Phys. J. E 41, 7 (2017)CrossRefGoogle Scholar
  51. 51.
    H. Ning, S. Wiegand, J. Chem. Phys. 125, 221102 (2006)CrossRefGoogle Scholar
  52. 52.
    N. Takeyama, K. Nakashima, J. Solut. Chem. 17, 305 (1988)CrossRefGoogle Scholar
  53. 53.
    G. Hefter, Y. Marcus, W. Waghome, Chem. Rev. 102, 2773 (2002)CrossRefGoogle Scholar
  54. 54.
    Y. Marcus, Ion Properties (Marcel Dekker, New York, 1997)Google Scholar
  55. 55.
    J.K.G. Dhont, W.J. Briels, Eur. Phys. J. E 25, 61 (2008)CrossRefGoogle Scholar
  56. 56.
    D. Vigolo, S. Buzzaccaro, R. Piazza, Langmuir 26, 7792 (2010)CrossRefGoogle Scholar
  57. 57.
    M. Yang, M. Ripoll, Soft Matter 9, 4661 (2013)CrossRefGoogle Scholar
  58. 58.
    K.A. Eslahian, A. Majee, M. Maskos, A. Würger, Soft Matter 10, 1931 (2014)CrossRefGoogle Scholar
  59. 59.
    S. Duhr, D. Braun, Proc. Natl. Acad. Sci. USA 103, 19678 (2006)CrossRefGoogle Scholar
  60. 60.
    J.K.G. Dhont, S. Wiegand, S. Duhr, D. Braun, Langmuir 23, 1674 (2007)CrossRefGoogle Scholar
  61. 61.
    H. Ning, J.K.G. Dhont, S. Wiegand, Langmuir 24, 2426 (2008)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. Sarkar
    • 1
  • J. C. Riedl
    • 1
  • G. Demouchy
    • 1
    • 2
  • F. Gélébart
    • 1
  • G. Mériguet
    • 1
  • V. Peyre
    • 1
  • E. Dubois
    • 1
  • R. Perzynski
    • 1
    Email author
  1. 1.Sorbonne Université, CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauXParisFrance
  2. 2.Département de PhysiqueUniv. Cergy-PontoiseCergy-PontoiseFrance

Personalised recommendations