Advertisement

Measurement of film permeability in 2D foams

  • Emilie Forel
  • Dominique LangevinEmail author
  • Emmanuelle Rio
Regular Article
  • 10 Downloads

Abstract.

The coarsening of quasi-2D wet foams is well described theoretically by the model of Schimming and Durian, that takes into account the diffusion through the Plateau borders and the vertices in a rigorous manner. In this article, we describe an experimental study of coarsening in which the foam film permeability is measured in such quasi-2D wet foams. We first performed a full characterization of the structure of the studied foams. Then we measured the coarsening rates. It appears that, in these foams, the film thicknesses are still too small for the Plateau borders and the vertices to contribute, but the surface Plateau borders lead to a smaller coarsening rate compared to dry foams. This rate increases with capillary pressure and follows well the prediction of the model. We demonstrate the importance of working in controlled pressure conditions during permeability measurements. Indeed, permeability depends on film thickness itself depending on capillary pressure.

Graphical abstract

Keywords

Flowing Matter: Interfacial phenomena 

References

  1. 1.
    I. Cantat, S. Cohen-Addad, F. Elias, F. Graner, R. Hohler, Foams - Structure and Dynamics (Oxford University Press, 2013)Google Scholar
  2. 2.
    Z. Briceno-Ahumada, D. Langevin, Adv. Colloid Interface Sci. 244, 124 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Ramanathan, H.J. Muller, H. Mohwald, R. Krastev, ACS Appl. Mater. Interfaces 3, 633 (2011)CrossRefGoogle Scholar
  4. 4.
    R. Farajzadeh, R. Krastev, P.L.J. Zitha, Adv. Colloid Interface Sci. 137, 27 (2008)CrossRefGoogle Scholar
  5. 5.
    L. Saulnier, W. Drenckhan, P.E. Larre, C. Anglade, D. Langevin et al., Colloids Surf. A: Physicochem. Eng. Asp. 473, 32 (2015)CrossRefGoogle Scholar
  6. 6.
    C.D. Schimming, D.J. Durian, Phys. Rev. E 96, 032805 (2017)CrossRefGoogle Scholar
  7. 7.
    J. von Neumann, Metal Interfaces (American Society for Metals, Cleveland, 1952) pp. 108–110Google Scholar
  8. 8.
    A.E. Roth, C.D. Jones, D.J. Durian, Phys. Rev. E 87, 042304 (2013)CrossRefGoogle Scholar
  9. 9.
    E. Forel, B. Dollet, D. Langevin, E. Rio, Phys. Rev. Lett. 122, 088002 (2019)CrossRefGoogle Scholar
  10. 10.
    A. Maestro, W. Drenckhan, E. Rio, R. Hohler, Soft Matter 9, 2531 (2013)CrossRefGoogle Scholar
  11. 11.
    V. Bergeron, Langmuir 13, 3474 (1997)CrossRefGoogle Scholar
  12. 12.
    A.J. Webster, M.E. Cates, Langmuir 17, 595 (2001)CrossRefGoogle Scholar
  13. 13.
    D.J. Lyttle, J.R. Lu, T.J. Su, R.K. Thomas, J. Penfold, Langmuir 11, 1001 (1995)CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Emilie Forel
    • 1
  • Dominique Langevin
    • 1
    Email author
  • Emmanuelle Rio
    • 1
  1. 1.Laboratoire de Physique des Solides, UMR CNRS 8502Université Paris Sud 11Orsay CedexFrance

Personalised recommendations