Advertisement

Correlation between thermophoretic behavior and hydrophilicity for various alcohols

  • Monika Bjelčić
  • Doreen Niether
  • Simone WiegandEmail author
Regular Article
Part of the following topical collections:
  1. Thermal Non-Equilibrium Phenomena in Soft Matter

Abstract.

Recent experiments for various amides and sugars showed a clear correlation of the temperature dependence of the Soret coefficient with the hydrophilicity, quantitatively described by the logarithm of the 1-octanol/water partition coefficient log P . This coefficient is a measure for the hydrophilicity/hydrophobicity balance of a solute and is often used to model the transport of a compound in the environment or to screen for potential pharmaceutical compounds. In order to validate whether this concept works also for other water soluble molecules we investigated systematically the thermophoresis of mono- and polyhydric alcohols. As experimental method we use a holographic grating technique called infrared Thermal Diffusion Forced Rayleigh Scattering (IR-TDFRS). Experiments showed that the temperature dependence of the Soret coefficient of polyhydric alcohols also correlates with log P and lies on the same master plot as amides and sugars.

Graphical abstract

Keywords

Topical issue: Thermal Non-Equilibrium Phenomena in Soft Matter 

Supplementary material

10189_2019_11831_MOESM1_ESM.pdf (500 kb)
Supplementary material

References

  1. 1.
    M. Jerabek-Willemsen, T. Andre, R. Wanner, H.M. Roth, S. Duhr, P. Baaske, D. Breitsprecher, J. Mol. Struct. 1077, 101 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    R. Piazza, S. Iacopini, B. Triulzia, Phys. Chem. Chem. Phys. 6, 1616 (2004)CrossRefGoogle Scholar
  3. 3.
    S. Duhr, D. Braun, Proc. Natl. Acad. Sci. U.S.A. 103, 19678 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    S. Iacopini, R. Piazza, Europhys. Lett. 63, 247 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Doreen Niether, Mona Sarter, Bernd König, Michaela Zamponi, Jörg Fitter, Andreas Stadler, Simone Wiegand, AIP Conf. Proc. 1929, 020001 (2018)CrossRefGoogle Scholar
  6. 6.
    S. Alves, F.L.S. Cuppo, A. Bourdon, A.M. Figueiredo, J. Opt. Soc. Am. B 23, 2328 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    M.P. Santos, S.L. Gomez, E. Bringuier, A.M.F. Neto, Phys. Rev. E 77, 011403 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    B. Arlt, S. Datta, T. Sottmann, S. Wiegand, J. Phys. Chem. B 114, 2118 (2010)CrossRefGoogle Scholar
  9. 9.
    Ph. Naumann, S. Datta, T. Sottmann, B. Arlt, H. Frielinghaus, S. Wiegand, J. Phys. Chem. B 118, 3451 (2014)CrossRefGoogle Scholar
  10. 10.
    K. Maeda, N. Shinyashiki, S. Yagihara, S. Wiegand, R. Kita, J. Chem. Phys. 143, 124504 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Kazuya Eguchi, Doreen Niether, Simone Wiegand, Rio Kita, Eur. Phys. J. E 39, 86 (2016)CrossRefGoogle Scholar
  12. 12.
    E. Lapeira, M.M. Bou-Ali, J.A. Madariaga, C. Santamaria, Microgravity Sci. Technol. 28, 553 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Doreen Niether, Silvia Di Lecce, Fernando Bresme, Simone Wiegand, Phys. Chem. Chem. Phys. 20, 1012 (2018)CrossRefGoogle Scholar
  14. 14.
    D. Niether, H. Kriegs, J.K.G. Dhont, S. Wiegand, J. Chem. Phys. 149, 044506 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    André, J. Phys. Chem. B 122, 4093 (2018)CrossRefGoogle Scholar
  16. 16.
    Y. Kishikawa, S. Wiegand, R. Kita, Biomacromolecules 11, 740 (2010)CrossRefGoogle Scholar
  17. 17.
    A. Königer, B. Meier, W. Köhler, Philos. Mag. 89, 907 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    P. Polyakov, S. Wiegand, J. Chem. Phys. 128, 034505 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    R. Sugaya, B.A. Wolf, R. Kita, Biomacromolecules 7, 435 (2006)CrossRefGoogle Scholar
  20. 20.
    Doreen Niether, Dzmitry Afanasenkau, Jan K.G. Dhont, Simone Wiegand, Proc. Natl. Acad. Sci. U.S.A. 113, 4272 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    D. Niether, T. Kawaguchi, J. Hovancova, K. Eguchi, J.K.G. Dhont, R. Kita, S. Wiegand, Langmuir 33, 8483 (2017)CrossRefGoogle Scholar
  22. 22.
    I. Prigogine, L. Debrouckere, R. Amand, Physica 16, 851 (1950)ADSCrossRefGoogle Scholar
  23. 23.
    J. Luettmer-Strathmann, Int. J. Thermophys. 26, 1693 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    B. Rousseau, C. Nieto-Draghi, J.B. Avalos, Europhys. Lett. 67, 976 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    P.A. Artola, B. Rousseau, Phys. Rev. Lett. 98, 125901 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Robert Byron Bird, Warren E. Stewart, Edwin N. Lightfoot, Transport Phenomena, revised second edition (Wiley, New York, 2007)Google Scholar
  27. 27.
    C.R. Wilke, Pin Chang, AlChE J. 1, 264 (1955)CrossRefGoogle Scholar
  28. 28.
    Myo T. Tyn, Waclaw F. Calus, J. Chem. Eng. Data 20, 310 (1975)CrossRefGoogle Scholar
  29. 29.
    W. Hayduk, B.S. Minhas, Can. J. Chem. Eng. 60, 295 (1982)CrossRefGoogle Scholar
  30. 30.
    Robert Evans, Zhaoxia Deng, Alexandria K. Rogerson, Andy S. McLachlan, Jeff J. Richards, Mathias Nilsson, Gareth A. Morris, Angew. Chem. Int. Ed. 52, 3199 (2013)CrossRefGoogle Scholar
  31. 31.
    A. Gierer, K. Wirtz, Z. Naturforsch. A: Phys. Sci. 8, 532 (1953)ADSCrossRefGoogle Scholar
  32. 32.
    A. Becker, W. Köhler, B. Müller, Ber. Bunsenges. Phys. Chem. Chem. Phys. 99, 600 (1995)CrossRefGoogle Scholar
  33. 33.
    S. Wiegand, H. Ning, H. Kriegs, J. Phys. Chem. B 111, 14169 (2007)CrossRefGoogle Scholar
  34. 34.
    G. Wittko, W. Köhler, Philos. Mag. 83, 1973 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    L.J. Tichacek, W.S. Kmak, H.G. Drickamer, J. Phys. Chem. 60, 660 (1956)CrossRefGoogle Scholar
  36. 36.
    P. Kolodner, H. Williams, C. Moe, J. Chem. Phys. 88, 6512 (1988)ADSCrossRefGoogle Scholar
  37. 37.
    R. Kita, S. Wiegand, J. Luettmer-Strathmann, J. Chem. Phys. 121, 3874 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    G.H. Großmann, K.H. Ebert, Ber. Bunsenges. Phys. Chem. Chem. Phys. 85, 1026 (1981)CrossRefGoogle Scholar
  39. 39.
    W. Köhler, R. Schäfer, Polymer analysis by thermal-diffusion forced rayleigh scattering, in New Developments in Polymer Analytics II, edited by M. Schmidt, Advances in Polymer Science, Vol. 151 (Springer, Berlin, 2000) pp. 1--59Google Scholar
  40. 40.
    A. Bondi, J. Phys. Chem. 68, 441 (1964)CrossRefGoogle Scholar
  41. 41.
    Gerardino D'Errico, Ornella Ortona, Fabio Capuano, Vincenzo Vitagliano, J. Chem. Eng. Data 49, 1665 (2004)CrossRefGoogle Scholar
  42. 42.
    Jonathan T. Su, P. Brent Duncan, Amit Momaya, Arimatti Jutila, David Needham, J. Chem. Phys. 132, 044506 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    John George, Nandhibatla V. Sastry, J. Chem. Eng. Data 48, 1529 (2003)CrossRefGoogle Scholar
  44. 44.
    N.G. Tsierkezos, I.E. Molinou, J. Chem. Eng. Data 43, 989 (1998)CrossRefGoogle Scholar
  45. 45.
    Fong-Meng Pang, Chye-Eng Seng, Tjoon-Tow Teng, M.H. Ibrahim, J. Mol. Liq. 136, 71 (2007)CrossRefGoogle Scholar
  46. 46.
    C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Adv. Drug Deliv. Rev. 46, 3 (2001)CrossRefGoogle Scholar
  47. 47.
    Vellarkad N. Viswanadhan, Arup K. Ghose, Ganapathi R. Revankar, Roland K. Robins, J. Chem. Inf. Comput. Sci. 29, 163 (1989)CrossRefGoogle Scholar
  48. 48.
    Gilles Klopman, Ju-Yun Li, Shaomeng Wang, Mario Dimayuga, J. Chem. Inf. Comput. Sci. 34, 752 (1994)CrossRefGoogle Scholar
  49. 49.
    Marvin 16.5.2.0, 2016, ChemAxon (Calculator Plugins for structure property prediction and calculation (of $\log P$)), http://www.chemaxon.com

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Monika Bjelčić
    • 1
  • Doreen Niether
    • 1
  • Simone Wiegand
    • 1
    Email author
  1. 1.ICS-3 Soft Condensed MatterForschungszentrum Jülich GmbHJülichGermany

Personalised recommendations