Advertisement

Convective drying of a porous medium with a paste cover

  • N. Ben Abdelouahab
  • A. Gossard
  • S. Rodts
  • B. Coasne
  • P. CoussotEmail author
Regular Article

Abstract.

The convective drying of a composite system made of a porous medium covered with a paste is a situation often encountered with soils, roads, building and cultural heritage materials. Here we discuss the basic mechanisms at work during the drying of a model composite system made of a homogeneous paste covering a simple granular packing. We start by reviewing the rather well-known case of the convective drying of a simple granular packing (i.e. without paste cover), which serves as a reference for physical interpretations. We show that a simple model assuming homogeneous desaturation followed by a progressive development of a dry front from the sample free surface is in agreement with observations of the internal liquid distribution variations in time. In particular, this model is able to reproduce the saturation vs. time curves of various simple granular systems, which supports our understanding of physical mechanisms at work. Then we show the detailed characteristics of drying of initially saturated model composite systems (with kaolin or cellulose paste) with the help of MRI measurements providing the liquid distribution in the sample at different times during the process up to the very last stages of drying. It appears that the granular medium is unaffected (i.e. remains saturated) during an initial period during which the paste shrinks and finally forms a sufficiently rigid porous structure which will not any more shrink later on. Then the drying process is governed by capillary effects down to very low saturation. Over a wide range of saturations both media desaturate homogeneously (within each medium) at different rates which depend on the specific porous structure of the media, so as to maintain capillary equilibrium throughout the sample. During these different stages the drying rate of the whole system remains constant. For sufficiently low saturation in the paste a dry front can develop, both in the paste and the porous medium below, and the drying rate now decreases. These results show that in a drying composite system liquid extraction can occur more or less simultaneously in the different parts of the material up to the very last stages of drying. The corresponding evolution of the distributions of liquid in the different parts of the sample also provides key information for the prediction of ion or particle transport and accumulation in the different parts of a composite system.

Graphical abstract

Keywords

Flowing Matter: Interfacial phenomena 

References

  1. 1.
    J.P. Nadeau, J.R. Puiggali, Drying: From Physical Phenomena to Industrial Processes (Tec & Doc Lavoisier, Paris, 1995) (in French)Google Scholar
  2. 2.
    A.V. Luikov, Heat and Mass Transfer in Capillary Porous Media (Pergamon Press, London, 1966)Google Scholar
  3. 3.
    S. Whitaker, Adv. Heat Transfer 13, 1 (1998)Google Scholar
  4. 4.
    J. Van Brakel, Adv. Dry. 1, 217 (1980)Google Scholar
  5. 5.
    J.B. Laurindo, M. Prat, Chem. Eng. Sci. 53, 2257 (1998)CrossRefGoogle Scholar
  6. 6.
    I.N. Tsimpanogiannis, Y.C. Yortsos, S. Poulou et al., Phys. Rev. E 59, 4353 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    P. Coussot, Eur. Phys. J. B 15, 557 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    F. Chauvet, P. Duru, S. Geoffroy, M. Prat, Phys. Rev. Lett. 103, 124502 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    D. Or, P. Lehmann, E. Shahraeeni, N. Shokri, Vadose Zone J. 12, Issue No. 4 (2013)  https://doi.org/10.2136/vzj2012.0163
  10. 10.
    N. Prime, Z. Housni, L. Fraikin, A. Leonard, R. Charlier, S. Levasseur, Transp. Porous Media 106, 47 (2015)CrossRefGoogle Scholar
  11. 11.
    P. Coussot, C. Gauthier, D. Nadji, J.C. Borgotti, P. Vié, F. Bertrand, C.R. Acad. Sci. Paris 327, 1101 (1999)ADSGoogle Scholar
  12. 12.
    L. Pel, H. Brocken, K. Kopinga, Int. J. Heat Mass Transfer 39, 1273 (1996)CrossRefGoogle Scholar
  13. 13.
    P. Faure, P. Coussot, Phys. Rev. E 82, 036303 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    G.H.A. van der Heijden, L. Pel, H.P. Huinink, K. Kopinga, Chem. Eng. Sci. 66, 4241 (2011)CrossRefGoogle Scholar
  15. 15.
    N. Shokri, D. Or, Water Resour. Res. 47, W09513 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    N. Shokri, P. Lehmann, D. Or, Water Resour. Res. 45, W10433 (2009)ADSGoogle Scholar
  17. 17.
    A.G. Yiotis, D. Salin, E.S. Tajer, Y.C. Yortsos, Phys. Rev. E 86, 026310 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    J. Thiery, S. Rodts, D.A. Weitz, P. Coussot, Phys. Rev. Fluids 2, 074201 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    N. Shahidzadeh-Bonn, A. Azouni, P. Coussot, J. Phys.: Condens. Matter 19, 112101 (2007)ADSGoogle Scholar
  20. 20.
    E. Keita, T.E. Kodger, P. Faure, S. Rodts, D.A. Weitz, P. Coussot, Phys. Rev. E 94, 033104 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    A. Bourges, V. Verges-Belmin, Mater. Struct. 44, 1233 (2011)CrossRefGoogle Scholar
  22. 22.
    B. Lubelli, R.P.J. van Hees, J. Cultural Heritage 11, 10 (2010)CrossRefGoogle Scholar
  23. 23.
    H.J.P. Brocken, M.E. Spiekman, L. Pel, K. Kopinga, J.A. Larbi, Mater. Struct. 31, 49 (1998)CrossRefGoogle Scholar
  24. 24.
    E. Bourguignon, Desalination of model porous media with the help of the poultice technique, PhD Thesis, Univ. Paris-Est (2009) (in French)Google Scholar
  25. 25.
    T.D. Gonçalvez, L. Pel, J.D. Rodrigues, Constr. Build. Mater. 23, 1751 (2009)CrossRefGoogle Scholar
  26. 26.
    H.M. van der Kooij, J. Sprakel, Soft Matter 11, 6353 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    M. Goavec, S. Rodts, V. Gaudefroy, M. Coquil, E. Keita, J. Goyon, X. Chateau, P. Coussot, Soft Matter 14, 8612 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    S. Emid, J.H.N. Creyghton, Physica B 128, 81 (1985)CrossRefGoogle Scholar
  29. 29.
    M. Bogdan, B.J. Balcom, T.W. Bremner, R.L. Armstrong, J. Magn. Reson. A 116, 266 (1995)ADSCrossRefGoogle Scholar
  30. 30.
    P.J. Prado, B.J. Balcom, S.D. Beyea, R.L. Armstrong, T.W. Bremner, Solid State Nucl. Magn. Reson. 10, 1 (1997)CrossRefGoogle Scholar
  31. 31.
    P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Clarendon, Oxford, 1993)Google Scholar
  32. 32.
    E. Keita, S.A. Koehler, P. Faure, D.A. Weitz, P. Coussot, Eur. Phys. J. E 39, 23 (2016)CrossRefGoogle Scholar
  33. 33.
    P. Lehmann, S. Assouline, D. Or, Phys. Rev. E 77, 056309 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    P. Lehmann, O. Merlin, P. Gentine, D. Or, Geophys. Res. Lett. 45, 398 (2018)Google Scholar
  35. 35.
    E. Shahraeeni, P. Lehmann, D. Or, Water Resour. Res. 48, W09525 (2012)ADSGoogle Scholar
  36. 36.
    P. Lehmann, D. Or, Water Resour. Res. 49, 8250 (2013)CrossRefGoogle Scholar
  37. 37.
    J.F. Daian, Equilibrium and Transfer in Porous Media 1: Equilibrium States (Wiley, 2014)Google Scholar
  38. 38.
    H. Colina, P. Acker, Mater. Struct. 33, 101 (2000)CrossRefGoogle Scholar
  39. 39.
    R.C. Chiu, M.J. Cima, J. Am. Ceram. Soc. 76, 2769 (1993)CrossRefGoogle Scholar
  40. 40.
    R. Weinberger, J. Struct. Geol. 21, 379 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    H. Colina, S. Roux, Eur. Phys. J. E 1, 189 (2000)CrossRefGoogle Scholar
  42. 42.
    J.A. Nairn, S.R. Kim, Eng. Fract. Mech. 42, 195 (1992)CrossRefGoogle Scholar
  43. 43.
    J. Thiery, E. Keita, S. Rodts, D. Courtier Murias, T. Kodger, A. Pegoraro, P. Coussot, Eur. Phys. J. E 39, 117 (2016)CrossRefGoogle Scholar
  44. 44.
    C. Nunes, L. Pel, J. Kunecky, Z. Slizkova, Constr. Build. Mater. 142, 395 (2017)CrossRefGoogle Scholar
  45. 45.
    L. Pel, A. Sawdy, V. Voronina, J. Cult. Herit. 11, 59 (2010)CrossRefGoogle Scholar
  46. 46.
    J. Petkovic, H.P. Huinink, L. Pel, K. Kopinga, R.P.J. van Hees, Mater. Struct. 40, 475 (2007)CrossRefGoogle Scholar
  47. 47.
    A.G. Yiotis, A.G. Boudouvis, A.K. Stubos, I.N. Tsimpanogiannis, Y.C. Yortsos, AIChE J. 50, 2721 (2004)CrossRefGoogle Scholar
  48. 48.
    L. Xu, S. Davies, A.B. Schofield, D.A. Weitz, Phys. Rev. Lett. 101, 094502 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    A.A. Moghaddam, A. Kharaghani, E. Tsotas, M. Prat, Phys. Fluids 29, 022102 (2017)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • N. Ben Abdelouahab
    • 1
    • 2
  • A. Gossard
    • 2
  • S. Rodts
    • 1
  • B. Coasne
    • 3
  • P. Coussot
    • 1
    Email author
  1. 1.Univ. Paris-Est, Laboratoire Navier (ENPC-IFSTTAR-CNRS)Champs sur MarneFrance
  2. 2.CEA, DEN, Univ Montpellier, DE2D, SEAD, Laboratoire des Procédés Supercritiques et de Décontamination, MarcouleBagnols-sur-CèzeFrance
  3. 3.Univ. Grenoble Alpes, CNRS, LIPhyGrenobleFrance

Personalised recommendations