Advertisement

A comparison of peptide amphiphile nanofiber macromolecular assembly strategies

  • Aykutlu Dana
  • Ayse B. Tekinay
  • E. Deniz TekinEmail author
Regular Article
  • 54 Downloads

Abstract.

Supramolecular peptide nanofibers that are composed of peptide amphiphile molecules have been widely used for many purposes from biomedical applications to energy conversion. The self-assembly mechanisms of these peptide nanofibers also provide convenient models for understanding the self-assembly mechanisms of various biological supramolecular systems; however, the current theoretical models that explain these mechanisms do not sufficiently explain the experimental results. In this study, we present a new way of modeling these nanofibers that better fits with the experimental data. Molecular dynamics simulations were applied to create model fibers using two different layer models and two different tilt angles. Strikingly, the fibers which were modeled to be tilting the peptide amphiphile molecules and/or tilting the plane were found to be more stable and consistent with the experiments.

Graphical abstract

Keywords

Soft Matter: Self-organisation and Supramolecular Assemblies 

Supplementary material

10189_2019_11827_MOESM1_ESM.pdf (1.3 mb)
Supplementary material

References

  1. 1.
    H.G. Cui, E.T. Pashuck, Y.S. Velichko, S.J. Weigand, A.G. Cheetham, C.J. Newcomb, S.I. Stupp, Science 327, 555 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    J.D. Hartgerink, E. Beniash, S.I. Stupp, Proc. Natl. Acad. Sci. U.S.A. 99, 5133 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    J.D. Hartgerink, E. Beniash, S.I. Stupp, Science 294, 1684 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    K.L. Niece, J.D. Hartgerink, J.J.J.M. Donners, S.I. Stupp, J. Am. Chem. Soc. 125, 7146 (2003)CrossRefGoogle Scholar
  5. 5.
    G.A. Silva, C. Czeisler, K.L. Niece, E. Beniash, D.A. Harrington, J.A. Kessler, S.I. Stupp, Science 303, 1352 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    O.-S. Lee, V. Cho, G.C. Schatz, Nano Lett. 12, 4907 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Y.S. Velichko, S.I. Stupp, M.O. de la Cruz, J. Phys. Chem. B 112, 2326 (2008)CrossRefGoogle Scholar
  8. 8.
    A. Li, A. Hokugo, A. Yalom, E.J. Berns, N. Stephanopoulos, M.T. McClendon, L.A. Segovia, I. Spigelman, S.I. Stupp, R. Jarrahy, Biomaterials 35, 8780 (2014)CrossRefGoogle Scholar
  9. 9.
    G. Cinar, H. Ceylan, M. Urel, T.S. Erkal, E.D. Tekin, A.B. Tekinay, A. Dana, M.O. Guler, Biomacromolecules 13, 3377 (2012)CrossRefGoogle Scholar
  10. 10.
    Y.S. Dagdas, A. Tombuloglu, A.B. Tekinay, A. Dana, M.O. Guler, Soft Matter 7, 3524 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    S. Toksoz, R. Mammadov, A.B. Tekinay, M.O. Guler, J. Colloid Interface Sci. 356, 131 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    M. Karplus, Acc. Chem. Res. 35, 321 (2002)CrossRefGoogle Scholar
  13. 13.
    A. Hospital, J.R. Goni, M. Orozco, J.L. Gelpi, Adv. Appl. Bioinform. Chem. 8, 37 (2015)Google Scholar
  14. 14.
    A. Manandhar, M. Kang, K. Chakraborty, P.K. Tangab, S.M. Loverde, Org. Biomol. Chem. 15, 7993 (2017)CrossRefGoogle Scholar
  15. 15.
    C.-T. Lai, N.L. Rosi, G.C. Schatz, J. Phys. Chem. Lett. 8, 2170 (2017)CrossRefGoogle Scholar
  16. 16.
    O.-S. Lee, S.I. Stupp, G.C. Schatz, J. Am. Chem. Soc. 133, 3677 (2011)CrossRefGoogle Scholar
  17. 17.
    E.D. Tekin, RSC Adv. 5, 66582 (2015)CrossRefGoogle Scholar
  18. 18.
    A.D. Ozkan, A.B. Tekinay, M.O. Guler, E.D. Tekin, RSC Adv. 6, 104201 (2016)CrossRefGoogle Scholar
  19. 19.
    S. Tsonchev, A. Troisi, G.C. Schatz, M.A. Ratner, J. Phys. Chem. B 108, 15278 (2004)CrossRefGoogle Scholar
  20. 20.
    I.W. Fu, C.B. Markegard, B.K. Chu, H.D. Nguyen, Langmuir 30, 7745 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Tsonchev, G.C. Schatz, M.A. Ratner, J. Phys. Chem. B 108, 8817 (2004)CrossRefGoogle Scholar
  22. 22.
    S. Tsonchev, A. Troisi, G.C. Schatz, M.A. Ratner, Nano Lett. 4, 427 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    O.-S. Lee, Y. Liu, G.C. Schatz, J. Nanopart. Res. 14, 936 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    T. Yu, O.-S. Lee, G.C. Schatz, J. Phys. Chem. A 117, 7453 (2013)CrossRefGoogle Scholar
  25. 25.
    E.D. Tekin, Chem. Phys. Lett. 614, 204 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    A. Iscen, G.C. Schatz, EPL 119, 38002 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    C. Oostenbrink, A. Villa, A. Mark, W. van Gunsteren, J. Comput. Chem. 25, 1656 (2004)CrossRefGoogle Scholar
  28. 28.
    O. Berger, O. Edholm, F. Jahnig, Biophys. J. 72, 2002 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    P. Smith, W. Vangunsteren, Chem. Phys. Lett. 215, 315 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    T. Darden, D. York, L.J. Pedersen, Chem. Phys. 98, 10089 (1993)ADSGoogle Scholar
  31. 31.
    L. Verlet, Phys. Rev. 159, 98 (1967)ADSCrossRefGoogle Scholar
  32. 32.
    B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, J. Comput. Chem. 18, 1463 (1997)CrossRefGoogle Scholar
  33. 33.
    G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 126, 014101 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    M. Parrinello, A. Rahman, J. Appl. Phys. 52, 7182 (1981)ADSCrossRefGoogle Scholar
  35. 35.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. Modell. 14, 33 (1996)CrossRefGoogle Scholar
  36. 36.
    A.E. Topal, G. Tansik, A.D. Ozkan, M.O. Guler, A. Dana, A.B. Tekinay, Adv. Mater. Interfaces 4, 1700090 (2017)CrossRefGoogle Scholar
  37. 37.
    F.B. Dikecoglu, A.E. Topal, A.D. Ozkan, E.D. Tekin, A.B. Tekinay, M.O. Guler, A. Dana, Nanotechnology 29, 285701 (2018)CrossRefGoogle Scholar
  38. 38.
    M. Goktas, G. Cinar, I. Orujalipoor, S. Ide, A.B. Tekinay, M.O. Guler, Biomacromolecules 16, 1247 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Aykutlu Dana
    • 1
  • Ayse B. Tekinay
    • 2
  • E. Deniz Tekin
    • 3
    Email author
  1. 1.Spilker Engineering & Applied SciencesStanford UniversityStanfordUSA
  2. 2.Eryigit Medical DevicesResearch and Development CenterAnkaraTurkey
  3. 3.Faculty of EngineeringUniversity of Turkish Aeronautical AssociationAnkaraTurkey

Personalised recommendations