Advertisement

The Soret coefficient from the Faxén theorem for a particle moving in a fluid under a temperature gradient

  • Andrés Arango-RestrepoEmail author
  • J. Miguel Rubi
Regular Article
  • 44 Downloads
Part of the following topical collections:
  1. Thermal Non-Equilibrium Phenomena in Soft Matter

Abstract.

We compute the Soret coefficient for a particle moving through a fluid subjected to a temperature gradient. The viscosity and thermal conductivity of the particle are in general different from those of the solvent and its surface tension may depend on temperature. We find that the Soret coefficient depends linearly on the derivative of the surface tension with respect to temperature and decreases in accordance with the ratios between viscosities and thermal conductivities of particle and solvent. Additionally, the Soret coefficient also depends on a parameter which gives the ratio between Marangoni and shear stresses, a dependence which results from the local stresses inducing a heat flux along the particle surface. Our results are compared to those obtained by using the Stokes value for the mobility in the calculation of the Soret coefficient and in the estimation of the radius of the particle. We show cases in which these differences may be important. The new expression of the Soret coefficient can systematically be used for a more accurate study of thermophoresis.

Graphical abstract

Keywords

Topical issue: Thermal Non-Equilibrium Phenomena in Soft Matter 

References

  1. 1.
    R. Piazza, S. Iacopini, B. Triulzi, PCCP 6, 1616 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    W. Koehler, K.I. Morozov, J. Non-Equilib. Thermodyn. 41, 151 (2016)ADSGoogle Scholar
  3. 3.
    M. Rahman, M. Saghir, Int. J. Heat Mass Transfer 73, 693 (2014)CrossRefGoogle Scholar
  4. 4.
    R. Piazza, A. Parola, J. Phys.: Condens. Matter 20, 153102 (2008)ADSGoogle Scholar
  5. 5.
    J.K. Platten, J. Appl. Mech. 73, 5 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    O. Wilhelmsen, D. Bedeaux, D. Reguera, J. Chem. Phys. 142, 171103 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    D. Ross, L.E. Locascio, Anal. Chem. 74, 2556 (2002)CrossRefGoogle Scholar
  8. 8.
    I. Zahmatkesh, Int. Commun. Heat Mass Transfer 35, 369 (2008)CrossRefGoogle Scholar
  9. 9.
    C.J. Tsai, J.S. Lin, S.G. Aggarwal, D.R. Chen, Aerosol Sci. Technol. 38, 131 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    B.U. Lee, D.S. Byun, G.N. Bae, J.H. Lee, J. Aerosol Sci. 37, 1788 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    H.J. Keh, C.L. Ou, Aerosol Sci. Technol. 38, 675 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    D. Braun, A. Libchaber, Phys. Biol. 1, 1 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    G. Kucsko, P. Maurer, N.Y. Yao, M. Kubo, H. Noh, P. Lo, H. Park, M.D. Lukin, Nature 500, 54 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    J. Olarte-Plata, J.M. Rubi, F. Bresme, Phys. Rev. E 97, 052607 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    H. Faxen, Ark. Mat., Astron. Fys. 18, 1 (1924)Google Scholar
  16. 16.
    S.R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics (Courier Corporation, 2013)Google Scholar
  17. 17.
    J. Bafaluy, I. Pagonabarraga, J.M. Rubi, D. Bedeaux, Physica A 213, 277 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    R. Berker, Encyclopedia of Physics, Vol. VIII/2: Fluid Dynamics II (Springer-Verlag, 1963)Google Scholar
  19. 19.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Kluwer, Dordrecht, 1991)Google Scholar
  20. 20.
    R. Zwanzig, J. Res. Natl. Bur. Std. (US) B 68, 143 (1964)Google Scholar
  21. 21.
    R.S. Subramanian, J. Fluid Mech. 153, 389 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    F.E. Torres, E. Herbolzheimer, Phys. Fluids A 5, 537 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    A.W. Adamson, A.P. Gast, Physical Chemistry of Surfaces (Interscience Publishers, New York, 1967). Google Scholar
  24. 24.
    J. Harper, D. Moore, J. Pearson, J. Fluid Mech. 27, 361 (1967)ADSCrossRefGoogle Scholar
  25. 25.
    P. Naumann, S. Datta, T. Sottmann, B. Arlt, H. Frielinghaus, S. Wiegand, J. Phys. Chem. B 118, 3451 (2014)CrossRefGoogle Scholar
  26. 26.
    A. van Veluwen, H.N. Lekkerkerker, C.G. de Kruif, A. Vrij, Faraday Discuss. 83, 59 (1987)CrossRefGoogle Scholar
  27. 27.
    W. Goldburg, Am. J. Phys. 67, 1152 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    B.J. Berne, R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover Publications, Mineola, NY, 2000)Google Scholar
  29. 29.
    R. Pecora, J. Nanopart. Res. 2, 123 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    P.A. Hassan, S. Rana, G. Verma, Langmuir 31, 3 (2014)CrossRefGoogle Scholar
  31. 31.
    H.L. Fu, L. Gao, Int. J. Therm. Sci. 61, 61 (2012)CrossRefGoogle Scholar
  32. 32.
    P. Tillman, J.M. Hill, Int. J. Heat Mass Transfer 34, 399 (2007)CrossRefGoogle Scholar
  33. 33.
    X.F. Zhou, L. Gao, J. Appl. Phys. 100, 083503 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    B.E. Poling, J.M. Prausnitz, J.P. Oapos Connell, Properties of Gases and Liquids (McGraw Hill, 2007)Google Scholar
  35. 35.
    A.A. Pádua, J.M. Fareleira, J.C. Calado, W.A. Wakeham, J. Chem. Eng. Data 41, 1488 (1996)CrossRefGoogle Scholar
  36. 36.
    T. Sottmann, R. Strey, J. Chem. Phys. 106, 8606 (1997)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departament de Física de la Matéria Condensada, Facultat de FísicaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Institut de Nanociència i NanotecnologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations