Advertisement

Stability analysis of a gravity-driven thermoviscous liquid film flowing over a heated flat substrate

  • Ashna Srivastava
  • Tara Chand Kumawat
  • Naveen TiwariEmail author
Regular Article
  • 27 Downloads

Abstract.

Two-dimensional steady-state solutions and their stability analysis are presented for a gravity-driven thin film of a thermoviscous liquid. The governing equations and boundary conditions are simplified using the lubrication approximation. The analytically obtained film thickness evolution equation consists of various dimensionless parameters such as the Marangoni number, Biot number and thermoviscosity number. The viscosity of the liquid is assumed as an exponential function of temperature. The viscosity decreases within the liquid film as the temperature increases. Due to localized heating interfacial temperature gradients generate surface tension gradient which results into thermocapillary or Marangoni stress. The Marangoni stress opposes the fluid flow at the leading edge of heater leading to an increase in the film thickness locally. This locally thick structure becomes unstable beyond critical values of the parameters that leads to formation of rivulets in the transverse direction. Using the linear stability analysis it is found that the Marangoni stress and the thermoviscous effect have a destabilizing effect on the thin-film flow. At much higher values of the thermoviscosity number another mode of instability appears which is known as thermocapillary instability which leads to oscillating film profiles. For streamwise perturbations, the destabilizing effect of the thermoviscosity number for localized and uniform heating remains consistent.

Graphical abstract

Keywords

Flowing Matter: Interfacial phenomena 

References

  1. 1.
    D.L. DeVoe, Sens. Actuators A: Phys. 88, 263 (2001)CrossRefGoogle Scholar
  2. 2.
    S.G. Bankoff, J. Heat Transfer 116, 10 (1994)CrossRefGoogle Scholar
  3. 3.
    K. Wantanaa, P. Aniwatc, S. Bunluec, T. Alongkotd, K. Anusite, K. Pisiste, Mater. Today: Proc. 4, 6626 (2017)Google Scholar
  4. 4.
    A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    R. Craster, O. Matar, Rev. Mod. Phys. 81, 1131 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    S.W. Joo, S.H. Davis, S.G. Bankoff, J. Fluid Mech. 230, 117 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    S. Kalliadasis, E.A. Demekhin, C. Ruyer-Quil, M.G. Velarde, J. Fluid Mech. 492, 303 (2003)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    P.M.J. Trevelyan, S. Kalliadasis, J. Eng. Math. 50, 177 (2004)CrossRefGoogle Scholar
  9. 9.
    B. Scheid, A. Oron, P. Colinet, U. Thiele, J.C. Legros, Phys. Fluids 14, 4130 (2002)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    J.M. Skotheim, U. Thiele, B. Scheid, J. Fluid Mech. 475, 1 (2003)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    N. Tiwari, Z. Mester, J.M. Davis, Phys. Rev. E 76, 056306 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    N. Tiwari, J.M. Davis, Phys. Fluids 21, 022105 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    N. Tiwari, A. Awasthi, J.M. Davis, Phys. Fluids 26, 042105 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    N. Tiwari, J.M. Davis, Phys. Fluids 21, 102101 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    S. Kalliadasis, C. Bielarz, G.M. Homsy, Phys. Fluids 12, 1889 (2000)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    S. Kalliadasis, G.M. Homsy, J. Fluid Mech. 448, 387 (2001)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    C. Bielarz, S. Kalliadasis, Phys. Fluids 15, 2512 (2003)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J.M. Davis, S.M. Troian, Phys. Fluids 17, 0721031 (2005)Google Scholar
  19. 19.
    S. Saprykin, P.M.J. Trevelyan, R.J. Koopmans, S. Kalliadasis, Phys. Rev. E 75, 026306 (2007)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A.M. Cazabat, F. Heslot, S.M. Troian, P. Carles, Nature 346, 824 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    A.M. Frank, O.A. Kabov, Phys. Fluids 18, 032107 (2006)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    K.A. Smith, J. Fluid Mech. 24, 401 (1966)ADSCrossRefGoogle Scholar
  23. 23.
    S. Sreenivasan, S.P. Lin, Int. J. Heat Mass Transfer 21, 1517 (1978)CrossRefGoogle Scholar
  24. 24.
    D.A. Goussis, R.E. Kelly, Int. J. Heat Mass Transfer 33, 2237 (1990)CrossRefGoogle Scholar
  25. 25.
    D.A. Goussis, R.E. Kelly, J. Fluid Mech. 223, 25 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    O.A. Kabov, Heat transfer from a heater with a small linear dimension to a free falling liquid film, in Proceedings of the 1st Russian National Conference on Heat Transfer, Vol. 6 (Energoatomizdat, Moscow, 1994) pp. 90--95Google Scholar
  27. 27.
    O.A. Kabov, Heat Transfer Res. 27, 221 (1996)Google Scholar
  28. 28.
    O.A. Kabov, J.C. Legros, I. Marchuk, B. Scheid, Fluid Dyn. 36, 521 (2001)CrossRefGoogle Scholar
  29. 29.
    N. Tiwari, J.M. Davis, J. Colloid Interface Sci. 355, 243 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    D. Goussis, R.E. Kelly, Phys. Fluids 28, 3207 (1985)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    S.M. Yih, R.C. Seagrave, Am. Inst. Chem. Eng. J. 24, 803 (1978)CrossRefGoogle Scholar
  32. 32.
    C.-C. Hwang, C.-I. Weng, Int. J. Heat Mass Transfer 31, 1775 (1988)CrossRefGoogle Scholar
  33. 33.
    S.K. Wilson, B.R. Duffy, J. Eng. Math. 42, 359 (2002)CrossRefGoogle Scholar
  34. 34.
    G.A. Leslie, S.K. Wilson, B.R. Duffy, Phys. Fluids 23, 062101 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    G.A. Leslie, S.K. Wilson, B.R. Duffy, Q. J. Mech. Appl. Math. 65, 483 (2012)CrossRefGoogle Scholar
  36. 36.
    T.C. Kumawat, N. Tiwari, Phys. Fluids 30, 032103 (2018)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ashna Srivastava
    • 1
  • Tara Chand Kumawat
    • 1
  • Naveen Tiwari
    • 1
    Email author
  1. 1.Department of Chemical EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations