Advertisement

Sharp interface model for elastic motile cells

  • Yony BreslerEmail author
  • Benoit Palmieri
  • Martin Grant
Tips and Tricks
  • 68 Downloads

Abstract.

In order to study the effect of cell elastic properties on the behavior of assemblies of motile cells, this paper describes an alternative to the cell phase field (CPF) we have previously proposed. The CPF is a multi-scale approach to simulating many cells which tracked individual cells and allowed for large deformations. Though results were largely in agreement with experiment that focus on the migration of a soft cancer cell in a confluent layer of normal cells, simulations required large computing resources, making a more detailed study unfeasible. In this work we derive a sharp interface limit of CPF, including all interactions and parameters. This new model scales linearly with both system and cell size, compared to our original CPF implementation, which is quadratic in cell size, this gives rise to a considerable speedup, which we discuss in the article. We demonstrate that this model captures a similar behavior and allows us to obtain new results that were previously intractable. We obtain the full velocity distribution for a large range of degrees of confluence, \(\rho\), and show regimes where its tail is heavier and lighter than a normal distribution. Furthermore, we fully characterize the velocity distribution with a single parameter, and its dependence on \(\rho\) is fully determined. Finally, cell motility is shown to linearly decrease with increasing \(\rho\), consistent with previous theoretical results.

Graphical abstract

Keywords

Tips and Tricks 

Supplementary material

10189_2019_11815_MOESM1_ESM.mp4 (4.9 mb)
Supplementary material
10189_2019_11815_MOESM2_ESM.mp4 (4.9 mb)
Supplementary material
10189_2019_11815_MOESM3_ESM.mp4 (4.8 mb)
Supplementary material
10189_2019_11815_MOESM4_ESM.mp4 (4.8 mb)
Supplementary material

References

  1. 1.
    Xavier Trepat, Michael R. Wasserman, Thomas E. Angelini, Emil Millet, David A. Weitz, James P. Butler, Jeffrey J. Fredberg, Nat. Phys. 5, 426 (2009)CrossRefGoogle Scholar
  2. 2.
    Dhananjay T. Tambe, C. Corey Hardin, Thomas E. Angelini, Kavitha Rajendran, Chan Young Park, Xavier Serra-Picamal, Enhua H. Zhou, Muhammad H. Zaman, James P. Butler, David A. Weitz, Jeffrey J. Fredberg, Xavier Trepat, Nat. Mater. 10, 469 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Peter Friedl, Bettina Weigelin, Nat. Immunol. 9, 960 (2008)CrossRefGoogle Scholar
  4. 4.
    Makiko Nonomura, PLoS ONE 7, e33501 (2012)CrossRefGoogle Scholar
  5. 5.
    Sara Najem, Martin Grant, Phys. Rev. E 93, 052405 (2016)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    B.A. Camley, Y. Zhang, Y. Zhao, B. Li, E. Ben-Jacob, H. Levine, W.-J. Rappel, Proc. Natl. Acad. Sci. U.S.A. 111, 14770 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Jakob Löber, Falko Ziebert, Igor S. Aranson, Sci. Rep. 5, 9172 (2015)CrossRefGoogle Scholar
  8. 8.
    Benoit Palmieri, Yony Bresler, Denis Wirtz, Martin Grant, Sci. Rep. 5, 11745 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Nikolas Provatas, Nigel Goldenfeld, Jonathan Dantzig, J. Comput. Phys. 148, 265 (1999)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Jian Hua Yao, K.R. Elder, Hong Guo, Martin Grant, Phys. Rev. B 47, 14110 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    F. Alaimo, S. Praetorius, A. Voigt, New J. Phys. 18, 083008 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Marco Scianna, Luigi Preziosi, Katarina Wolf, Math. Biosci. Eng. 10, 235 (2012)CrossRefGoogle Scholar
  13. 13.
    Sebastian A. Sandersius, Timothy J. Newman, Phys. Biol. 5, 15002 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Anna Mkrtchyan, Jan Åström, Mikko Karttunen, Soft Matter 10, 4332 (2014)CrossRefGoogle Scholar
  15. 15.
    Michael H. Köpf, Len M. Pismen, Soft Matter 9, 3727 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Pilhwa Lee, Charles W. Wolgemuth, PLoS Comput. Biol. 7, e1002007 (2011)CrossRefGoogle Scholar
  17. 17.
    Julia C. Arciero, Qi Mi, Maria F. Branca, David J. Hackam, David Swigon, Biophys. J. 100, 535 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    B.A. Camley, W.-J. Rappel, J. Phys. D: Appl. Phys. 50, 113002 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Vincent Hakim, Pascal Silberzan, Rep. Prog. Phys. 80, 076601 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Dapeng Bi, J.H. Lopez, J.M. Schwarz, M. Lisa Manning, Nat. Phys. 11, 1074 (2014)Google Scholar
  21. 21.
    Dapeng Bi, Xingbo Yang, M. Cristina Marchetti, M. Lisa Manning, Phys. Rev. X 6, 021011 (2016)Google Scholar
  22. 22.
    D. Grossman, I.S. Aranson, E. Ben Jacob, New J. Phys. 10, 023036 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Pranav Madhikar, Jan Åström, Jan Westerholm, Mikko Karttunen, Comput. Phys. Commun. 232, 206 (2018)CrossRefGoogle Scholar
  24. 24.
    L.I. Rubinshtein, The Stefan Problem, Translations of Mathematical Monographs (American Mathematical Society, 1971)Google Scholar
  25. 25.
    P.W. Voorhees, J. Stat. Phys. 38, 231 (1985)ADSCrossRefGoogle Scholar
  26. 26.
    Charles A. Johnson, Surf. Sci. 3, 429 (1965)ADSCrossRefGoogle Scholar
  27. 27.
    Robert F. Sekerka, J. Cryst. Growth 264, 530 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Juliet Lee, Akira Ishihara, Julie A. Theriot, Ken Jacobson, Nature 362, 167 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    H.P. Grimm, A.B. Verkhovsky, A. Mogilner, J.J. Meister, Eur. Biophys. J. 32, 563 (2003)CrossRefGoogle Scholar
  30. 30.
    Michael M. Kozlov, Alex Mogilner, Biophys. J. 93, 3811 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Angelika Manhart, Dietmar Oelz, Christian Schmeiser, Nikolaos Sfakianakis, J. Theor. Biol. 382, 244 (2015)CrossRefGoogle Scholar
  32. 32.
    J.S. Rowlinson, J. Stat. Phys. 20, 197 (1979)ADSCrossRefGoogle Scholar
  33. 33.
    Samuel M. Allen, John W. Cahn, Acta Metall. 27, 1085 (1979)CrossRefGoogle Scholar
  34. 34.
    Benoit Palmieri, Martin Grant, Samuel A. Safran, Langmuir 30, 11734 (2014)CrossRefGoogle Scholar
  35. 35.
    Phillip J. Barry, Ronald N. Goldman, ACM SIGGRAPH Comput. Graph. 22, 199 (1988)CrossRefGoogle Scholar
  36. 36.
    Guillaume T. Charras, Justin C. Yarrow, Mike A. Horton, L. Mahadevan, T.J. Mitchison, Nature 435, 365 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    W. Helfrich, Z. Naturforsch. C 28, 693 (1973)CrossRefGoogle Scholar
  38. 38.
    B. Schäling, The Boost C++ Libraries (XML Press, 2011)Google Scholar
  39. 39.
    Meng Horng Lee, Pei Hsun Wu, Jack Rory Staunton, Robert Ros, Gregory D. Longmore, Denis Wirtz, Biophys. J. 102, 2731 (2012)CrossRefGoogle Scholar
  40. 40.
    S. Jackman, Bayesian Analysis for the Social Sciences, Wiley Series in Probability and Statistics (Wiley, 2009)Google Scholar
  41. 41.
    Melville S. Green, J. Chem. Phys. 22, 398 (1954)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Ryogo Kubo, J. Phys. Soc. Jpn. 12, 570 (1957)ADSCrossRefGoogle Scholar
  43. 43.
    R. Phillips, J. Kondev, J. Theriot, N. Orme, Physical Biology of the Cell (Garland Science, 2013)Google Scholar
  44. 44.
    M.M. Hurley, Peter Harrowell, Phys. Rev. E 52, 1694 (1995)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsMcGill UniversityQuébecCanada

Personalised recommendations