Hierarchical and synergistic self-assembly in composites of model wormlike micellar-polymers and nanoparticles results in nanostructures with diverse morphologies

  • Shaikh Mubeena
  • Apratim ChatterjiEmail author
Regular Article


Using Monte Carlo simulations, we investigate the self-assembly of model nanoparticles inside a matrix of model equilibrium polymers (or matrix of wormlike micelles) as a function of the polymeric matrix density and the excluded volume parameter between polymers and nanoparticles. In this paper, we show morphological transitions in the system architecture via synergistic self-assembly of nanoparticles and the equilibrium polymers. In a synergistic self-assembly, the resulting morphology of the system is a result of the interaction between the nanoparticles and the polymers and corresponding re-organization of both the assemblies. This is different from the polymer templating method. We report the morphological transition of nanoparticle aggregates from percolating network-like structures to non-percolating clusters as a result of the change in the excluded volume parameter between nanoparticles and polymeric chains. Corresponding to the change in the self-assembled structures of nanoparticles, the matrix of equilibrium polymers also simultaneously shows a transition from a dispersed state to a percolating network-like structure formed by the clusters of polymeric chains. We show that the shape anisotropy of the nanoparticle clusters formed is governed by the polymeric density resulting in rod-like, sheet-like or other anisotropic nanoclusters. It is also shown that the pore shape and the pore size of the porous network of nanoparticles can be changed by changing the minimum approaching distance between nanoparticles and polymers. We provide a theoretical understanding of why various nanostructures with very different morphologies are obtained.

Graphical abstract


Soft Matter: Self-organisation and Supramolecular Assemblies 

Supplementary material

10189_2019_11811_MOESM1_ESM.pdf (3.9 mb)
Supplementary material


  1. 1.
    C. Black, K. Guarini, G. Breyta, M. Colburn, R. Ruiz, R. Sandstrom, E. Sikorski, Y. Zhang, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 24, 3188 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    R. Shenhar, T.B. Norsten, V.M. Rotello, Adv. Mater. 17, 657 (2005)CrossRefGoogle Scholar
  3. 3.
    R.B. Thompson, V.V. Ginzburg, M.W. Matsen, A.C. Balazs, Macromolecules 35, 1060 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    A. Haryono, W.H. Binder, Small 2, 600 (2006)CrossRefGoogle Scholar
  5. 5.
    Y. Lin, A. Böker, J. He, K. Sill, H. Xiang, C. Abetz, X. Li, J. Wang, T. Emrick, S. Long et al., Nature 434, 55 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    B. Rozenberg, R. Tenne, Prog. Polym. Sci. 33, 40 (2008)CrossRefGoogle Scholar
  7. 7.
    H.A. Patel, R.S. Somani, H.C. Bajaj, R.V. Jasra, Bull. Mater. Sci. 29, 133 (2006)CrossRefGoogle Scholar
  8. 8.
    R.Y. Lochhead, The role of polymers in cosmetics: Recent trends, in Cosmetic Nanotechnology (ACS Publications, 2007) Chapt. 1, pp. 3--56,
  9. 9.
    L.M. Katz, Nanotechnology and applications in cosmetics: General overview, in Cosmetic Nanotechnology (ACS Publications, 2007) Chapt. 11, pp. 193--200,
  10. 10.
    S. Raj, S. Jose, U. Sumod, M. Sabitha, J. Pharm. Bioallied Sci. 4, 186 (2012)CrossRefGoogle Scholar
  11. 11.
    H.M. De Azeredo, Food Res. Int. 42, 1240 (2009)CrossRefGoogle Scholar
  12. 12.
    N. Sozer, J.L. Kokini, Trends Biotechnol. 27, 82 (2009)CrossRefGoogle Scholar
  13. 13.
    V. Mourio, in Nanocomposites for Musculoskeletal Tissue Regeneration, edited by H. Liu (Woodhead Publishing, Oxford, 2016) pp. 175--186Google Scholar
  14. 14.
    P. Dwivedi, S.S. Narvi, R.P. Tewari, J. Appl. Biomater. Funct. Mater. 11, 129 (2013)Google Scholar
  15. 15.
    C. Ingrosso, A. Panniello, R. Comparelli, M.L. Curri, M. Striccoli, Materials 3, 1316 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    M. Striccoli, M. Curri, R. Comparelli, in Toward Functional Nanomaterials (Springer, 2009) pp. 173--192Google Scholar
  17. 17.
    G. Kedawat, B.K. Gupta, P. Kumar, J. Dwivedi, A. Kumar, N.K. Agrawal, S.S. Kumar, Y.K. Vijay, ACS Appl. Mater. Interfaces 6, 8407 (2014)CrossRefGoogle Scholar
  18. 18.
    L. Gence, V. Callegari, S. Melinte, S. Demoustier-Champagne, Y. Long, A. Dinescu, J. Duvail, in Nanowires Science and Technology (InTech, 2010)Google Scholar
  19. 19.
    S. Park, S.-W. Chung, C.A. Mirkin, J. Am. Chem. Soc. 126, 11772 (2004)CrossRefGoogle Scholar
  20. 20.
    T.K. Das, S. Prusty, Polym.-Plast. Technol. Eng. 51, 1487 (2012)CrossRefGoogle Scholar
  21. 21.
    A. Turberfield, Phys. World 16, 43 (2003)CrossRefGoogle Scholar
  22. 22.
    S.H. Park, H. Yan, J.H. Reif, T.H. LaBean, G. Finkelstein, Nanotechnology 15, S525 (2004)CrossRefGoogle Scholar
  23. 23.
    M. Alam, A. Siddiqui, M. Husain et al., Express Polym. Lett. 7, 723 (2013)CrossRefGoogle Scholar
  24. 24.
    H. Lekkerkerker, W.-K. Poon, P. Pusey, A. Stroobants, P. Warren, Europhys. Lett. 20, 559 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    W. Poon, J. Phys.: Condens. Matter 14, R859 (2002)ADSGoogle Scholar
  26. 26.
    S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255 (1954)ADSCrossRefGoogle Scholar
  27. 27.
    A. Gast, C. Hall, W. Russel, J. Colloid Interface Sci. 96, 251 (1983)ADSCrossRefGoogle Scholar
  28. 28.
    H. De Hek, A. Vrij, J. Colloid Interface Sci. 84, 409 (1981)ADSCrossRefGoogle Scholar
  29. 29.
    G.J. Fleer, A.M. Skvortsov, R. Tuinier, Macromol. Theory Simul. 16, 531 (2007)CrossRefGoogle Scholar
  30. 30.
    W. Poon, A. Pirie, M. Haw, P. Pusey, Physica A: Stat. Mech. Appl. 235, 110 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    I. Zhang, C.P. Royall, M.A. Faers, P. Bartlett, Soft Matter 9, 2076 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    L. Starrs, W. Poon, D. Hibberd, M. Robins, J. Phys.: Condens. Matter 14, 2485 (2002)ADSGoogle Scholar
  33. 33.
    Y.M. Joshi, Annu. Rev. Chem. Biomol. Eng. 5, 181 (2014)CrossRefGoogle Scholar
  34. 34.
    C. Kresge, M. Leonowicz, W.J. Roth, J. Vartuli, J. Beck, Nature 359, 710 (1992)ADSCrossRefGoogle Scholar
  35. 35.
    M. Seul, D. Andelman, Science 267, 476 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    Z. Tang, Z. Zhang, Y. Wang, S.C. Glotzer, N.A. Kotov, Science 314, 274 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    K. Van Workum, J.F. Douglas, Phys. Rev. E 73, 031502 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    D. Bedrov, G.D. Smith, L. Li, Langmuir 21, 5251 (2005)CrossRefGoogle Scholar
  39. 39.
    J.S. Shay, S.R. Raghavan, S.A. Khan, J. Rheol. 45, 913 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    S.N. Fejer, D.J. Wales, Phys. Rev. Lett. 99, 086106 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    S.C. Glotzer, M.J. Solomon, Nat. Mater. 6, 557 (2007)CrossRefGoogle Scholar
  42. 42.
    J.Y. Lee, A.C. Balazs, R.B. Thompson, R.M. Hill, Macromolecules 37, 3536 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    N. Xu, Q. Zhang, H. Yang, Y. Xia, Y. Jiang, Sci. Rep. 7, 43970 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    H. Sun, B. Yang, Sci. China Ser. E: Technol. Sci. 51, 1886 (2008)CrossRefGoogle Scholar
  45. 45.
    Q. Guo, R. Ghadiri, T. Weigel, A. Aumann, E.L. Gurevich, C. Esen, O. Medenbach, W. Cheng, B. Chichkov, A. Ostendorf, Polymers 6, 2037 (2014)CrossRefGoogle Scholar
  46. 46.
    Y. Luo, Z. Zheng, C. Xu, Z. Xie, Z. Zhang, Mater. Sci. Eng. A 432, 69 (2006)CrossRefGoogle Scholar
  47. 47.
    M.K. Abyaneh, P. Parisse, L. Casalis, Beilstein J. Nanotechnol. 7, 809 (2016)CrossRefGoogle Scholar
  48. 48.
    G. Cao, Y. Wang, Nanostructures and Nanomaterials: Synthesis, Properties, and Applications (World Scientific, 2004)Google Scholar
  49. 49.
    Z.L. Wang, Nanowires and Nanobelts: Materials, Properties and Devices, Vol. 1: Metal and Semiconductor Nanowires (Springer Science & Business Media, 2013)Google Scholar
  50. 50.
    A. Umar, S.H. Kim, Y.-B. Hahn, Curr. Appl. Phys. 8, 793 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    C.S. Lao, P.X. Gao, R.S. Yang, Y. Zhang, Y. Dai, Z.L. Wang, Chem. Phys. Lett. 417, 358 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    S. Singh, E.S. Kumar, M. Kottaisamy, M.R. Rao, in AIP Conference Proceedings, Vol. 1276 (AIP, 2010) pp. 37--42Google Scholar
  53. 53.
    R.K. Pandey, U. Rana, C. Chakraborty, S. Moriyama, M. Higuchi, ACS Appl. Mater. Interfaces 8, 13526 (2016)CrossRefGoogle Scholar
  54. 54.
    Y. Vyborna, S. Altunbas, M. Vybornyi, R. Häner, Chem. Commun. 53, 12128 (2017)CrossRefGoogle Scholar
  55. 55.
    Q. Xu, Nanoporous Materials: Synthesis and Applications (CRC Press, 2013)Google Scholar
  56. 56.
    J.Y. Ying, C.P. Mehnert, M.S. Wong, Angew. Chem. Int. Ed. 38, 56 (1999)CrossRefGoogle Scholar
  57. 57.
    K.P. Sharma, G. Kumaraswamy, I. Ly, O. Mondain-Monval, J. Phys. Chem. B 113, 3423 (2009)CrossRefGoogle Scholar
  58. 58.
    L. Ramos, P. Fabre, F. Nallet, C.-Y. Lu, Eur. Phys. J. E 1, 285 (2000)CrossRefGoogle Scholar
  59. 59.
    L. Sallen, P. Oswald, J. Géminard, J. Malthête, J. Phys. II 5, 937 (1995)Google Scholar
  60. 60.
    J.-F. Berret, in Molecular Gels (Springer, 2006) pp. 667--720Google Scholar
  61. 61.
    M. Turner, M. Cates, J. Phys. (Paris) 51, 307 (1990)CrossRefGoogle Scholar
  62. 62.
    M. Cates, J. Phys. Chem. 94, 371 (1990)CrossRefGoogle Scholar
  63. 63.
    S. Li, M. Meng Lin, M.S. Toprak, D.K. Kim, M. Muhammed, Nano Rev. 1, 5214 (2010)CrossRefGoogle Scholar
  64. 64.
    G. Ambrosetti, On the Insulator-Conductor Transition in Polymer Nanocomposites (EPFL, 2010)Google Scholar
  65. 65.
    A. Chatterji, R. Pandit, Europhys. Lett. 54, 213 (2001)ADSCrossRefGoogle Scholar
  66. 66.
    A. Chatterji, R. Pandit, J. Stat. Phys. 110, 1219 (2003)CrossRefGoogle Scholar
  67. 67.
    S. Mubeena, A. Chatterji, Phys. Rev. E 91, 032602 (2015)ADSCrossRefGoogle Scholar
  68. 68.
    M.E. Helgeson, T. Hodgdon, E.W. Kaler, N.J. Wagner, M. Vethamuthu, K.P. Ananthapadmanabhan, Langmuir 26, 8049 (2010)CrossRefGoogle Scholar
  69. 69.
    B. Biswas, C.K. Choudhury, G. Kumaraswamy, Faraday Discuss. 186, 61 (2016)ADSCrossRefGoogle Scholar
  70. 70.
    S. Chatterjee, P. Doshi, G. Kumaraswamy, Soft Matter 13, 5731 (2017)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsIISER-PunePuneIndia
  2. 2.Center for Energy ScienceIISER-PunePuneIndia

Personalised recommendations