Advertisement

Collective behavior of red blood cells in confined channels

  • Guillermo R. Lázaro
  • Aurora Hernández-Machado
  • Ignacio PagonabarragaEmail author
Regular Article
  • 10 Downloads

Abstract.

We study the flow properties of red blood cells in confined channels, when the channel width is comparable to the cell size. We focus on the case of intermediate concentrations when hydrodynamic interactions between cells play a dominant role. This regime is different to the case of low concentration in which the cells behave as hydrodynamically isolated. In this last case, the dynamic behavior is entirely controlled by the interplay between the interaction with the wall and the elastic response of the cell membrane. Our results highlight the different fluid properties when collective flow is present. The cells acquire a characteristic slipper shape, and parachute shapes are only observed at very large capillary numbers. We have characterized the spatial ordering and the layering by means of a pairwise correlation function. Focusing effects are observed at the core of the channel instead of at the lateral position typical of the single-train case. These results indicate that at these intermediate concentrations we observed at the microscale the first steps of the well-known macroscopic Fahraeus-Lindqvist effect. The rheological properties of the suspension are studied by means of the effective viscosity, with an expected shear-thinning behavior. Two main differences are obtained with respect to the single-train case. First, a large magnitude of the viscosity is obtained indicating a high resistance to flow. Secondly, the shear-thinning behavior is obtained at larger values of the capillary number respect to the single-train case. These results suggest that the phenomena of ordering in space and orientation occur at higher values of the capillary number.

Graphical abstract

Keywords

Living systems: Biological Matter 

References

  1. 1.
    O.K. Baskurt, M. Hardeman, M.W. Rampling, H.J. Meiselman, Handbook of Hemorheology and Hemodynamics (IOS Press, Amsterdam, Netherlands, 2007)Google Scholar
  2. 2.
    E. Pretorius, Oore-ofe O. Olumuyiwa-Akeredolu, S. Mbotwe, J. Bester, Blood Rev. 30, 263 (2016)CrossRefGoogle Scholar
  3. 3.
    K. Rack, V. Huck, M. Hoore, D. Fedosov, S.W. Schneider, G. Gompper, Sci. Rep. 7, 14278 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    K. Muller, D.A. Fedosov, G. Gompper, Sci. Rep. 4, 4871 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    H. Zhao, E.G. Shaqfeh, Phys. Rev. E 83, 061924 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    M. Toner, D. Irimia, Annu. Rev. Biomed. Eng. 7, 77 (2005)CrossRefGoogle Scholar
  7. 7.
    I.K. Dimov, L. Basabe-Desmonts, J.L. Garcia-Cordero, B.M. Ross, A.J. Riccoa, L.P. Lee, Lab Chip 11, 845 (2011)CrossRefGoogle Scholar
  8. 8.
    O.K. Baskurt, H.J. Meiselman, Semin. Thromb. Hemost. 29, 435 (2003)CrossRefGoogle Scholar
  9. 9.
    S. Huang, A. Undisz, M. Diez-Silva, H. Bow, M. Dao, J. Han, Integr. Biol. 5, 414 (2013)CrossRefGoogle Scholar
  10. 10.
    H. Mohamed, L.D. McCurdy, D.H. Szarowski, S. Duva, J.N. Turner, M. Caggana, IEEE Trans. Nanobiosci. 3, 251 (2004)CrossRefGoogle Scholar
  11. 11.
    W. Zhang, K. Kai, D.S. Choi, T. Iwamoto, Y.H. Nguyen, H. Wong, M.D. Landis, N.T. Ueno, J. Chang, L. Qin, Proc. Natl. Acad. Sci. U.S.A. 109, 18707 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Z. Shen, T. Fischer, A. Farutin, P. Vlahovska, J. Harting, C. Misbah, Phys. Rev. Lett. 120, 268102 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    M. Abkarian, M. Faivre, R. Horton, K. Smistrup, C.A. Best-Popescu, H.A. Stone, Biomed. Mater. 3, 034011 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    G. Tomaiuolo, M. Simone, V. Martinelli, B. Rotoli, S. Guido, Soft Matter 5, 3736 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    G. Tomaiuolo, S. Guido, Microvasc. Res. 82, 35 (2011)CrossRefGoogle Scholar
  16. 16.
    H. Noguchi, G. Gompper, Proc. Natl. Acad. Sci. U.S.A. 102, 14159 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    B. Kaoui, G. Biros, C. Misbah, Phys. Rev. Lett. 103, 188101 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    J.L. McWhirter, H. Noguchi, G. Gompper, Proc. Natl. Acad. Sci. U.S.A. 106, 6039 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    T.W. Secomb, Med. Eng. Phys. 33, 800 (2011)CrossRefGoogle Scholar
  20. 20.
    D.A. Fedosov, W. Pan, B. Caswell, G. Gompper, G.E. Karniadakis, Proc. Natl. Acad. Sci. U.S.A. 108, 11772 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    D. Alizadehrad, Y. Imai, K. Nakaoki, T. Ishikawa, T. Yamaguchi, J. Biomech. 45, 2684 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Rosti, L. Brandt, D. Mitra, Phys. Rev. F 3, 012301(R) (2018)Google Scholar
  23. 23.
    Z. Shen, A. Farutin, M. Thiébaud, C. Misbah, Phys. Rev. F 2, 103101 (2017)Google Scholar
  24. 24.
    V. Narsimhan, H. Zhao, E.S.G. Shaqfeh, Phys. Fluids 25, 061901 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    W. Helfrich, Z. Naturforsch. C 28, 693703 (1973)CrossRefGoogle Scholar
  26. 26.
    A.M. Forsyth, J. Wan, W.D. Ristenpart, H.A. Stone, Microvasc. Res. 80, 37 (2011)CrossRefGoogle Scholar
  27. 27.
    F. Campelo, A. Hernández-Machado, Eur. Phys. J. E 20, 37 (2006)CrossRefGoogle Scholar
  28. 28.
    F. Campelo, A. Hernández-Machado, Eur. Phys. J. ST 143, 101 (2007)CrossRefGoogle Scholar
  29. 29.
    S. Najem, M. Grant, Phys. Rev. E 93, 052405 (2016)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    G.R. Lázaro, I. Pagonabarraga, A. Hernández-Machado, Chem. Phys. Lipids 185, 46 (2015)CrossRefGoogle Scholar
  31. 31.
    G.R. Lázaro, A. Hernández-Machado, I. Pagonabarraga, Soft Matter 10, 7195 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    G.R. Lázaro, A. Hernández-Machado, I. Pagonabarraga, Soft Matter 10, 7207 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    B. Duenweg, A.J.C. Ladd, Adv. Polym. Sci. 221, 89 (2009)Google Scholar
  34. 34.
    M. Cates, J. Desplat, P. Stansell, A. Wagner, K. Stratford, R. Adhikari, I. Pagonabarraga, Philos. Trans. R. Soc. A 363, 1917 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    R. Benzi, M. Sbragaglia, S. Succi, M. Bernaschi, S. Chibbaro, J. Chem. Phys. 131, 104903 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    V.M. Kendon, M.E. Cates, I. Pagonabrraga, J.-C. Desplat, P. Blandon, J. Fluid Mech. 440, 147 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    R. Ledesma-Aguilar, I. Pagonabarraga, A. Hernández-Machado, Phys. Fluids 19, 102112 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    A.N. Ouhra, A. Farutin, O. Aouane, H. Ez-Zahraouy, A. Benyoussef, C. Misbah, Phys. Rev. E 97, 012404 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    B. Kahoui, J. Harting, Rheol. Acta 55, 465 (2016)CrossRefGoogle Scholar
  40. 40.
    M. Cates, J.C. Desplat, P. Stansell, A. Wagner, K. Stratford, R. Adhikari, I. Pagonabarraga, Philos. Trans. R. Soc. A 363, 1917 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    R. Ledesma-Aguilar, A. Hernández-Machado, I. Pagonabarraga, Phys. Fluids 19, 102113 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    Y.C. Fung, Biomechanics: Circulation (Springer, New York, 1997)Google Scholar
  43. 43.
    I. Pagonabarraga, M. Hagen, C. Lowe, D. Frenkel, Phys. Rev. E 59, 4458 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    P. Nghe, P. Tabeling, A. Ajdari, J. Non-Newton. Fluid Mech. 165, 313 (2010)CrossRefGoogle Scholar
  45. 45.
    J. Gachelin, G. Miño, H. Berthet, A. Lindner, A. Rousselet, E. Clément, Phys. Rev. Lett. 110, 268103 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Guillermo R. Lázaro
    • 1
  • Aurora Hernández-Machado
    • 1
  • Ignacio Pagonabarraga
    • 1
    • 2
    • 3
    Email author
  1. 1.Departament de Física de la Matèria CondensadaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Centre Européen de Calcul Atomique et MoléculaireÉcole Polytechnique Fédérale de Lausanne, BatochimeLausanneSwitzerland
  3. 3.Universitat de Barcelona Institute of Complex SystemsBarcelonaSpain

Personalised recommendations