Tonks-Frenkel instability in electrolyte under high-frequency AC electric fields

  • G. S. GanchenkoEmail author
  • S. Amiroudine
  • H. Bodiguel
  • S. V. Polyanskikh
  • E. A. Demekhin
Regular Article


The instability of an electrolyte surface to a high-frequency, 10 to 200kHz, electric field, normal to the interface is investigated theoretically. From a practical viewpoint, such a high frequency leads to the absence of undesired electrochemical reactions and provides an additional control parameter. The theory of unsteady electric double layer by Barrero and Ramos is exploited. At such a high frequency, which is much larger than the eigenfrequency of the mechanical system, the nonlinear mechanical term does not “feel” the fast part of the Coulomb force, but it feels its slower component. In fact, the system behaves as if the electric field were a DC field. The observed instability is qualitatively close to the Tonks-Frenkel instability. The problem of the linear stability of the 1D quiescent stationary solution is solved analytically. For the important limiting cases, simple analytical formulas are derived. The linear stability analysis is complemented by the DNS of the full nonlinear system of equations with broadband low-amplitude white-noise initial conditions. After a transition period, the linear instability mechanism filters out the broad spectrum except for a narrow band near the maximum growth rate in rather good agreement with the linear stability analysis. If the external field is large enough, the nonlinear evolution results in coherent structures with sharp tips resembling to a Taylor cone. An evaluation of the cone angle for different conditions gives its value of about 30° to 60° , which is smaller than the angle of 98.6° for DC field and qualitatively corresponds to the experiments (L.Y. Yeo et al., Phys. Rev. Lett. 92, 133902 (2004)) for the high-frequency AC field and to the theoretical evaluation of the AC Taylor cones in E.A. Demekhin et al., Phys. Rev. E 84, 035301(R) (2011).

Graphical abstract


Flowing Matter: Interfacial phenomena 


  1. 1.
    L. Tonks, Phys. Rev. A 48, 562 (1935)ADSCrossRefGoogle Scholar
  2. 2.
    Ya.I. Frenkel, Zh. Eksp. Teor. Fiz. 6, 347 (1936) (in Russian)Google Scholar
  3. 3.
    L.D. Landau, E.M. Lifshits, Electrodynamics of Continuous Media (Moscow, Nauka, 1982)Google Scholar
  4. 4.
    D.A. Saville, Phys. Fluids 13, 2987 (1970)ADSCrossRefGoogle Scholar
  5. 5.
    D.A. Saville, Phys. Fluids 14, 1095 (1971)ADSCrossRefGoogle Scholar
  6. 6.
    D.A. Saville, Annu. Rev. Fluid Mech. 29, 27 (1997)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    H.A. Haus, J.R. Melcher, Electromagnetic Fields and Energy (Prentice Hall, Englewood Cliffs, NJ, 1989) p. 742Google Scholar
  8. 8.
    N.M. Zubarev, Phys. Rev. E 65, 055301R (2002)ADSCrossRefGoogle Scholar
  9. 9.
    V.G. Suvorov, N.M. Zubarev, J. Phys D: Appl. Phys. 37, 289 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    G.Sh. Boltachev, N.M. Zubarev, Europhys. Lett. 76, 36 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    G.Sh. Boltachev, N.M. Zubarev, O.V. Zubareva, Phys. Rev. E 77, 056607 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    N.M. Zubarev, Tech. Phys. Lett. 25, 872 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    N.M. Zubarev, O.V. Zubareva, Tech. Phys. Lett. 26, 389 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    G.I. Taylor, Proc. R. Soc. Lond. A 280, 383 (1964)ADSCrossRefGoogle Scholar
  15. 15.
    J. Zeleny, Phys. Rev. 3, 69 (1914)ADSCrossRefGoogle Scholar
  16. 16.
    J. Zeleny, Phys. Rev. 10, 1 (1917)ADSCrossRefGoogle Scholar
  17. 17.
    J.F. de la Mora, Annu. Rev. Fluid Mech. 39, 217 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    L.Y. Yeo, D. Lastochkin, S.-C. Wang, H.C. Chang, Phys. Rev. Lett. 92, 133902 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    S. Maheshwari, H.C. Chang, Appl. Phys. Lett. 89, 234103 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    F. Maloggi, D. Ende, F. Mugele, Langmuir 24, 11847 (2008)CrossRefGoogle Scholar
  21. 21.
    A. Gonzales, A. Ramos, N.G. Green, A. Castellanos, H. Morgan, Phys. Rev. E 61, 4019 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    A. Gonzales, A. Ramos, N.G. Green et al., Phys. Rev. E 61, 4019 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    V.I. Arnold, Mathematical methods of classical mechanics (New York, Springer-Verlag, 1978)Google Scholar
  24. 24.
    V.I. Yudovich, Usp. Mekh. 4, 75 (2006)Google Scholar
  25. 25.
    D.V. Lyubimov, T.P. Lyubimova, A.A. Cherepanov, Dynamics of Interface in Vibration Fields (Moscow, Fizmatlit, 2003)Google Scholar
  26. 26.
    E.A. Demekhin, S.V. Polyanskikh, Fluid Dyn. 45, 719 (2010)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    E.A. Demekhin, S.V. Polyanskikh, J. Appl. Mech. Tech. Phys. 51, 31 (2010)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    E.A. Demekhin, S.V. Polyanskikh, J. Appl. Mech. Tech. Phys. 50, 776 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    S.V. Polyanskikh, Electrohydrodynamic Instability of Microflows with Concentration Polarisation, PhD Thesis (Moscow State University, under supervision of E.A. Demekhin, 2010)Google Scholar
  30. 30.
    E.A. Demekhin, S.V. Polyanskikh, A. Ramos, Phys. Rev. E 84, 035301(R) (2011)ADSCrossRefGoogle Scholar
  31. 31.
    G.S. Ganchenko, E.A. Demekhin, M. Mayur, S. Amiroudine, Phys. Fluids 27, 062002 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    A.H. Lefebvre, V.G. McDonell. Atomization and Sprays (New York, CRC Press, 2017)Google Scholar
  33. 33.
    H. Ragelle et al., Expert Opin. Drug Deliv. 14, 851 (2017)CrossRefGoogle Scholar
  34. 34.
    A. Gupta, H.A. Stone, Langmuir 34, 11971 (2018)CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • G. S. Ganchenko
    • 1
    Email author
  • S. Amiroudine
    • 2
  • H. Bodiguel
    • 3
  • S. V. Polyanskikh
    • 1
  • E. A. Demekhin
    • 1
    • 4
  1. 1.Laboratory of Electro-Hydrodynamics of Micro- and Nanoscales, Department of Mathematics and Computer ScienceFinancial UniversityKrasnodarRussia
  2. 2.Institut de Mécanique et d’Ingénierie - TREFLE, UMR CNRS 5295University of BordeauxPessac CedexFrance
  3. 3.Univ. Grenoble Alpes, Grenoble-INP, CNRS, LRPGrenobleFrance
  4. 4.Laboratory of General Aeromechanics, Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations