Advertisement

Activated complex theory of nucleation

  • Valeriy A. VlasovEmail author
Regular Article
  • 40 Downloads

Abstract.

A new nucleation theory is presented. This theory is based on the assumption that a critical nucleus of the new phase can be regarded as an activated complex that passes through the top of the energy barrier. In the framework of the proposed approach, an equation in a general form for the nucleation rate is obtained. This equation is used to obtain the calculated data in the case of homogeneous nucleation at the vapor-liquid, liquid-vapor, and liquid-solid phase transitions. A comparison of the calculated data with the available experimental data as well as with the calculated data obtained in the framework of the classical nucleation theory is carried out. From a comparison between the calculated data obtained in the framework of the presented theory and the experimental data for the supercooled water-ice phase transition, the dependence on temperature of the surface tension coefficient between supercooled water and ice is determined.

Graphical abstract

Keywords

Soft Matter: Interfacial Phenomena and Nanostructured Surfaces 

References

  1. 1.
    V.V. Slezov, Kinetics of First-order Phase Transitions (Wiley-VCH, Weinheim, 2009)Google Scholar
  2. 2.
    P.G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, 1996)Google Scholar
  3. 3.
    D. Kashchiev, Nucleation: Basic Theory with Applications (Butterworth-Heinemann, Oxford, 2000)Google Scholar
  4. 4.
    M.P. Anisimov, Russ. Chem. Rev. 72, 591 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    J.W.P. Schmelzer (Editor), Nucleation Theory and Applications (Wiley-VCH, Weinheim, 2005)Google Scholar
  6. 6.
    J.W. Gibbs, The Collected Works, Vol. 1: Thermodynamics (Longmans, Green and Co., New York, 1928)Google Scholar
  7. 7.
    M. Volmer, A. Weber, Z. Phys. Chem. 119, 277 (1926)Google Scholar
  8. 8.
    L. Farkas, Z. Phys. Chem. 125, 236 (1927)Google Scholar
  9. 9.
    R. Kaischew, I.N. Stranski, Z. Phys. Chem. B 26, 317 (1934)Google Scholar
  10. 10.
    R. Becker, W. Döring, Ann. Phys. 24, 719 (1935)CrossRefGoogle Scholar
  11. 11.
    Ya.B. Zeldovich, Zh. Eksp. Teor. Fiz. 12, 525 (1942)Google Scholar
  12. 12.
    J. Frenkel, Kinetic Theory of Liquids (Clarendon Press, Oxford, 1946)Google Scholar
  13. 13.
    B.N. Hale, Phys. Rev. A 33, 4156 (1986)ADSCrossRefGoogle Scholar
  14. 14.
    D.W. Oxtoby, J. Phys.: Condens. Matter 4, 7627 (1992)ADSGoogle Scholar
  15. 15.
    J. Wölk, R. Strey, C.H. Heath, B.E. Wyslouzil, J. Chem. Phys. 117, 4954 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    A.B. Nadykto, F. Yu, J. Chem. Phys. 122, 104511 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    S. Karthika, T.K. Radhakrishnan, P. Kalaichelvi, Cryst. Growth Des. 16, 6663 (2016)CrossRefGoogle Scholar
  18. 18.
    A. Dillmann, G.E.A. Meier, Chem. Phys. Lett. 160, 71 (1989)ADSCrossRefGoogle Scholar
  19. 19.
    A. Dillmann, G.E.A. Meier, J. Chem. Phys. 94, 3872 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    A. Laaksonen, I.J. Ford, M. Kulmala, Phys. Rev. E 49, 5517 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    S.L. Girshick, C.-P. Chiu, J. Chem. Phys. 93, 1273 (1990)ADSCrossRefGoogle Scholar
  22. 22.
    S.L. Girshick, J. Chem. Phys. 94, 826 (1991)ADSCrossRefGoogle Scholar
  23. 23.
    V.I. Kalikmanov, M.E.H. van Dongen, Phys. Rev. E 47, 3532 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    G. Wilemski, J. Chem. Phys. 103, 1119 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    L. Gránásy, J. Non-Cryst. Solids 162, 301 (1993)CrossRefGoogle Scholar
  26. 26.
    L. Gránásy, I. Egry, L. Ratke, D.M. Herlach, Scr. Metall. Mater. 30, 621 (1994)CrossRefGoogle Scholar
  27. 27.
    L. Gránásy, J. Chem. Phys. 104, 5188 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    G.K. Schenter, S.M. Kathmann, B.C. Garrett, Phys. Rev. Lett. 82, 3484 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    D. Reguera, H. Reiss, J. Phys. Chem. B 108, 19831 (2004)CrossRefGoogle Scholar
  30. 30.
    D.H. Rasmussen, J. Cryst. Growth 56, 45 (1982)ADSCrossRefGoogle Scholar
  31. 31.
    D.H. Rasmussen, M.-T. Liang, E. Esen, M.R. Appleby, Langmuir 8, 1868 (1992)CrossRefGoogle Scholar
  32. 32.
    D.W. Oxtoby, R. Evans, J. Chem. Phys. 89, 7521 (1988)ADSCrossRefGoogle Scholar
  33. 33.
    X.C. Zeng, D.W. Oxtoby, J. Chem. Phys. 94, 4472 (1991)ADSCrossRefGoogle Scholar
  34. 34.
    C.K. Bagdassarian, D.W. Oxtoby, J. Chem. Phys. 100, 2139 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    Y.C. Shen, D.W. Oxtoby, J. Chem. Phys. 105, 6517 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    S. Ghosh, S.K. Ghosh, J. Chem. Phys. 134, 024502 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    M. Sekine, K. Yasuoka, T. Kinjo, M. Matsumoto, Fluid Dyn. Res. 40, 597 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    G. Chkonia, J. Wölk, R. Strey, J. Wedekind, D. Reguera, J. Chem. Phys. 130, 064505 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    J. Anwar, D. Zahn, Angew. Chem. Int. Ed. 50, 1996 (2011)CrossRefGoogle Scholar
  40. 40.
    K.K. Tanaka, H. Tanaka, T. Yamamoto, K. Kawamura, J. Chem. Phys. 134, 204313 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    E. Sanz, C. Vega, J.R. Espinosa, R. Caballero-Bernal, J.L.F. Abascal, C. Valeriani, J. Am. Chem. Soc. 135, 15008 (2013)CrossRefGoogle Scholar
  42. 42.
    H. Eyring, J. Chem. Phys. 3, 107 (1935)ADSCrossRefGoogle Scholar
  43. 43.
    M.G. Evans, M. Polanyi, Trans. Faraday Soc. 31, 875 (1935)CrossRefGoogle Scholar
  44. 44.
    H. Eyring, Chem. Rev. 17, 65 (1935)CrossRefGoogle Scholar
  45. 45.
    S. Glasstone, K.J. Laidler, H. Eyring, The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena (McGraw-Hill, New York, 1941)Google Scholar
  46. 46.
    R.P. Sear, J. Phys.: Condens. Matter 19, 033101 (2007)ADSGoogle Scholar
  47. 47.
    E. Clouet, in ASM Handbook, Vol. 22A: Fundamentals of Modeling for Metals Processing, edited by D.U. Furrer, S.L. Semiatin (ASM International, Materials Park, 2009) pp. 203--219Google Scholar
  48. 48.
    Y. Viisanen, R. Strey, J. Chem. Phys. 101, 7835 (1994)ADSCrossRefGoogle Scholar
  49. 49.
    H. Lihavainen, Y. Viisanen, M. Kulmala, J. Chem. Phys. 114, 10031 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    V.P. Skripov, Metastable Liquids (Halsted Press, John Wiley & Sons, New York, 1974)Google Scholar
  51. 51.
    M. Blander, J.L. Katz, AIChE J. 21, 833 (1975)CrossRefGoogle Scholar
  52. 52.
    V.G. Baidakov, Low Temp. Phys. 39, 643 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    V.G. Baidakov, Explosive Boiling of Superheated Cryogenic Liquids (Wiley-VCH, Weinheim, 2007)Google Scholar
  54. 54.
    H.R. Pruppacher, J.D. Klett, Microphysics of Clouds and Precipitation, 2nd edition (Kluwer Academic Publishers, Dordrecht, 1997)Google Scholar
  55. 55.
    D. Turnbull, J.C. Fisher, J. Chem. Phys. 17, 71 (1949)ADSCrossRefGoogle Scholar
  56. 56.
    L. Ickes, A. Welti, C. Hoose, U. Lohmann, Phys. Chem. Chem. Phys. 17, 5514 (2015)CrossRefGoogle Scholar
  57. 57.
    L. Gránásy, T. Pusztai, P.F. James, J. Chem. Phys. 117, 6157 (2002)ADSCrossRefGoogle Scholar
  58. 58.
    P. Taborek, Phys. Rev. B 32, 5902 (1985)ADSCrossRefGoogle Scholar
  59. 59.
    C.L. Yaws, Thermophysical Properties of Chemicals and Hydrocarbons, 2nd edition (Gulf Professional Publishing, Waltham, 2014)Google Scholar
  60. 60.
    T. Schmeling, R. Strey, Ber. Bunsenges. Phys. Chem. 87, 871 (1983)CrossRefGoogle Scholar
  61. 61.
    A.G.M. Ferreira, L.Q. Lobo, J. Chem. Thermodyn. 41, 809 (2009)CrossRefGoogle Scholar
  62. 62.
    N.B. Vargaftik, Reference Book on Thermophysical Properties of Gases and Liquids, 2nd edition (Nauka, Moscow, 1972) in RussianGoogle Scholar
  63. 63.
    O. Sifner, J. Klomfar, J. Phys. Chem. Ref. Data 23, 63 (1994)ADSCrossRefGoogle Scholar
  64. 64.
    J. Wölk, R. Strey, J. Phys. Chem. B 105, 11683 (2001)CrossRefGoogle Scholar
  65. 65.
    D.R. Lide (Editor), CRC Handbook of Chemistry and Physics, 90th edition (CRC Press, Boca Raton, 2009)Google Scholar
  66. 66.
    D.M. Murphy, T. Koop, Q. J. R. Meteorol. Soc. 131, 1539 (2005)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of the Earth Cryosphere, Tyumen Scientific CenterSiberian Branch of the Russian Academy of SciencesTyumenRussia

Personalised recommendations