The influences of “gas” viscosity on water entry of hydrophobic spheres

  • Feng-Chao Yang
  • Xiao-Peng ChenEmail author
  • Pengtao Yue
Regular Article


An extremely thin gas film was found between a sphere and a free surface when the sphere impacted onto a water pool. That might influence the generation and evolution of water entry cavity. However, it is quite difficult to be captured through normal numerical and experimental tests. In this work, by using a finite element method we investigate the water entry of a hydrophobic sphere with gas viscosity artificially increased. The air film rupture in the early stage, contact line dynamics on a curved solid surface, and air pocket formation are investigated. The numerical results reveal that the lifetime of the gas film can be predicted by a viscous squeezing flow model qualitatively well. That relates to the fact that the gas film is much thinner than the diameter of the sphere, even when the gas viscosity is 100 times as large as the liquid one. However, inviscid flow can be found in the most part of the liquid bulk. The free surface profile (or the gas film profile) is then determined by the impact speed, namely the Weber number. More importantly, after the “gas” film ruptures at the bottom of the sphere, a contact line is generated. The contact line retracts along the sphere's surface, and the retracting speed fulfils \( U_{MCL}\propto T^{-1/2}\) law generally. This implies that the retracting process of the gas film is dominated by the inertia-capillary balance, rather than simply by the visco-capillary.

Graphical abstract


Flowing Matter: Interfacial phenomena 


  1. 1.
    A.M. Worthington, R.S. Cole, Philos. Trans. R. Soc. London, Ser. A 189, 137 (1897)ADSCrossRefGoogle Scholar
  2. 2.
    A.M. Worthington, R.S. Cole, Philos. Trans. R. Soc. London, Ser. A 194, 175 (1900)ADSCrossRefGoogle Scholar
  3. 3.
    A. May, J. Appl. Phys. 22, 1219 (1951)ADSCrossRefGoogle Scholar
  4. 4.
    A. May, J. Appl. Phys. 23, 1362 (1952)ADSCrossRefGoogle Scholar
  5. 5.
    V. Duclaux, F. Caillé, C. Duez, C. Ybert, L. Bocquet, C. Clanet, J. Fluid Mech. 591, 1 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    J. Aristoff, J.W.M. Bush, J. Fluid Mech. 619, 45 (2009)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    C. Duez, C. Ybert, C. Clanet, L. Bocquet, Nat. Phys. 3, 180 (2007)CrossRefGoogle Scholar
  8. 8.
    M.H. Zhao, X.P. Chen, Q. Wang, Sci. Rep. 4, 5376 (2014)CrossRefGoogle Scholar
  9. 9.
    D. Quéré, Annu. Rev. Mater. Res. 38, 71 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    F.C. Yang, X.P. Chen, P. Yue, Phys. Fluids 30, 012106 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    H. Ding, B.Q. Chen, H.R. Liu, C.Y. Zhang, P. Gao, X.Y. Lu, J. Fluid Mech. 783, 504 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    M. Do-Quang, G. Amberg, Phys. Fluids 21, 022102 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    M. Do-Quang, G. Amberg, Math. Comput. Simul. 80, 1664 (2010)CrossRefGoogle Scholar
  14. 14.
    H. Yan, Y. Liu, J. Kominarczuk, D.K.P. Yue, J. Fluid Mech. 641, 441 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    M. Greenhow, Appl. Ocean Res. 10, 191 (1988)CrossRefGoogle Scholar
  16. 16.
    S. Gaudet, Phys. Fluids 10, 2489 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    J.O. Marston, I.U. Vakarelski, S.T. Throddsen, J. Fluid Mech. 680, 660 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    A.L. Biance, C. Clanet, D. Quéré, Phys. Rev. E 69, 016301 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    T. Tran, H. de Maleprade, C. Sun, D. Lohse, J. Fluid Mech. 726, R3 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    K. Langley, E.Q. Li, S.T. Thoroddsen, J. Fluid Mech. 813, 647 (2017)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    C. Josserand, S. Thoroddsen, Annu. Rev. Fluid Mech. 48, 365 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    B.C.W. Tan, J.H.A. Vlaskamp, P. Denissenko, P.J. Thomas, J. Fluid Mech. 790, 33 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    P. Yue, J.J. Feng, C. Liu, J. Shen, J. Fluid Mech. 515, 293 (2004)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    P. Yue, C. Zhou, J.J. Feng, C.F. Ollivier-Gooch, H.H. Hu, J. Comput. Phys. 219, 47 (2006)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    P. Yue, C. Zhou, J.J. Feng, J. Fluid Mech. 645, 279 (2010)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    C. Huh, S.G. Mason, J. Colloid Interface Sci. 60, 11 (1977)ADSCrossRefGoogle Scholar
  27. 27.
    J.M. Aristoff, T.T. Truscott, A.H. Techet, J.W.M. Bush, Phys. Fluids 22, 032102 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    A.A. Korobkin, V.V. Pukhnach, Annu. Rev. Fluid Mech. 20, 159 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    D. Battistin, A. Iafrati, J. Fluids Struct. 17, 643 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    A. Iafrati, A.A. Korobkin, Phys. Fluids 16, 2214 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    C. Geuzaine, J.F. Remacle, Int. J. Numer. Methods Eng. 79, 1309 (2009)CrossRefGoogle Scholar
  32. 32.
    X. Chen, S. Mandre, J.J. Feng, Phys. Fluids 18, 092103 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    A.G. Petrov, I.S. Kharlamova, Eur. J. Mech. B/Fluids 48, 40 (2014)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    D.Y.C. Chan, E. Klaseboer, R. Manica, Soft Matter 7, 2235 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    J. Eggers, J.R. Lister, H.A. Stone, J. Fluid Mech. 401, 293 (1999)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    T.S. Chan, S. Srivastava, A. Marchand, B. Andreotti, L. Biferale, F. Toschi, J.H. Snoeije, Phys. Fluids 25, 074105 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    M. Liu, X.P. Chen, Eur. Phys. J. E 41, 92 (2018)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanics, Civil Engineering and ArchitectureNorthwestern Polytechnical UniversityXi’an, ShaanxiChina
  2. 2.School of Marine Science and TechnologyNorthwestern Polytechnical UniversityXi’an, ShaanxiChina
  3. 3.Department of MathematicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations