The E. coli transcriptional regulatory network and its spatial embedding

  • Kosmas KosmidisEmail author
  • Marc-Thorsten Hütt
Regular Article


Usually complex networks are studied as graphs consisting of nodes whose spatial arrangement is of no significance. Several real biological networks are, however, embedded in space. In this paper we study the transcription regulatory network (TRN) of E. coli as a spatially embedded network. The embedding space of this network is the circular E. coli chromosome, i.e. it is practically one dimensional. However, the TRN itself is a high-dimensional network due to the existence of an adequate number of long-range connections. We find that nodes in short topological distance l = 1, 2 tend, on average, to be in shorter spatial distances r indicating an abundance of short-range connections as well. Community analysis of the TRN reveals the interesting fact that highly interconnected subnets consist of nodes that tend to be in spatial proximity on the circular chromosome. We also find indications that for certain transcriptional aspects of the E. coli it is advantageous to treat the circular genome as two line segments starting from the OriC and ending to Ter.

Graphical abstract


Living systems: Biological networks 


  1. 1.
    U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman and Hall/CRC, 2006)Google Scholar
  2. 2.
    M.T. Hütt, Brit. J. Clin. Pharmacol. 77, 597 (2014)CrossRefGoogle Scholar
  3. 3.
    U. Alon, Nat. Rev. Genet. 8, 450 (2007)CrossRefGoogle Scholar
  4. 4.
    C. Christensen, A. Gupta, C.D. Maranas, R. Albert, Physica A: Stat. Mech. Appl. 373, 796 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    A. Saadatpour, R. Albert, EPJ Nonlinear Biomed. Phys. 4, 5 (2016)CrossRefGoogle Scholar
  6. 6.
    R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Science 298, 824 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    S.S. Shen-Orr, R. Milo, S. Mangan, U. Alon, Nat. Genet. 31, 64 (2002)CrossRefGoogle Scholar
  8. 8.
    S. Mangan, U. Alon, Proc. Natl. Acad. Sci. U.S.A. 100, 11980 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    N. Rosenfeld, J.W. Young, U. Alon, P.S. Swain, M.B. Elowitz, Science 307, 1962 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    F. Jacob, A. Ullmann, J. Monod, J. Mol. Biol. 13, 704 (1965)CrossRefGoogle Scholar
  11. 11.
    C. Marr, M. Geertz, M.T. Hütt, G. Muskhelishvili, BMC Syst. Biol. 2, 18 (2008)CrossRefGoogle Scholar
  12. 12.
    N. Sonnenschein, M. Geertz, G. Muskhelishvili, M.T. Hütt, BMC Syst. Biol. 5, 40 (2011)CrossRefGoogle Scholar
  13. 13.
    D. McCloskey, B.O. Palsson, A.M. Feist, Mol. Syst. Biol. 9, 661 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Fritsche, S. Li, D.W. Heermann, P.A. Wiggins, Nucl. Acids Res. 40, 972 (2011)CrossRefGoogle Scholar
  15. 15.
    P. Sobetzko, M. Glinkowska, A. Travers, G. Muskhelishvili, Mol. BioSyst. 9, 1643 (2013)CrossRefGoogle Scholar
  16. 16.
    A. Travers, G. Muskhelishvili, J. Thompson, Philos. Trans. R. Soc. A 370, 2960 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Chen, S. Wang, C.C. Hilgetag, C. Zhou, PLoS Comput. Biol. 9, e1002937 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    P. Warren, P. Ten Wolde, J. Mol. Biol. 342, 1379 (2004)CrossRefGoogle Scholar
  19. 19.
    R. Hermsen, P.R. Ten Wolde, S. Teichmann, Trends Genet. 24, 216 (2008)CrossRefGoogle Scholar
  20. 20.
    M. Barthélemy, Phys. Rep. 499, 1 (2011)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Barthélemy, EPL 63, 915 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    K. Kosmidis, S. Havlin, A. Bunde, EPL 82, 48005 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    D. Li, G. Li, K. Kosmidis, H. Stanley, A. Bunde, S. Havlin, EPL 93, 68004 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    M.T. Gastner, M.E. Newman, J. Stat. Mech.: Theor. Exp. 2006, P01015 (2006)CrossRefGoogle Scholar
  25. 25.
    P. Expert, T.S. Evans, V.D. Blondel, R. Lambiotte, Proc. Natl. Acad. Sci. U.S.A. 108, 7663 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    L. Daqing, K. Kosmidis, A. Bunde, S. Havlin, Nat. Phys. 7, 481 (2011)CrossRefGoogle Scholar
  27. 27.
    H. Salgado, M. Peralta-Gil, S. Gama-Castro, A. Santos-Zavaleta, L. Muñiz-Rascado, J.S. García-Sotelo, V. Weiss, H. Solano-Lira, I. Martínez-Flores, A. Medina-Rivera et al., Nucl. Acids Res. 41, D203 (2013)CrossRefGoogle Scholar
  28. 28.
    W.C. Hacker, S. Li, A.H. Elcock, Nucl. Acids Res. 45, 7541 (2017)CrossRefGoogle Scholar
  29. 29.
    F. Mosteller, J.W. Tukey, Data Analysis and Regression: A Second Course in Statistics (Pearson, 1977)Google Scholar
  30. 30.
    F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, D. Parisi, Proc. Natl. Acad. Sci. U.S.A. 101, 2658 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    B. Ball, B. Karrer, M. Newman, Phys. Rev. E 84, 036103 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    V.D. Blondel, J.L. Guillaume, R. Lambiotte, E. Lefebvre, J. Stat. Mech.: Theor. Exp. 2008, P10008 (2008)CrossRefGoogle Scholar
  33. 33.
    A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette, A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander et al., Proc. Natl. Acad. Sci. U.S.A. 102, 15545 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    G.O. Consortium, Nucl. Acids Res. 32, D258 (2004)CrossRefGoogle Scholar
  35. 35.
    P. Sobetzko, A. Travers, G. Muskhelishvili, Proc. Natl. Acad. Sci. U.S.A. 109, E42 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics DepartmentAristotle University of ThessalonikiPanepistimioupolisGreece
  2. 2.Computational Systems BiologyJacobs University BremenBremenGermany
  3. 3.PharmaInformatics UnitResearch Center ATHENAAthensGreece

Personalised recommendations