Transport of dynamic biochemical signals in a microfluidic single cell trapping channel with varying cross-sections

  • Miao Yu
  • Yong-Jiang Li
  • Jin-Yu Shao
  • Kai-Rong QinEmail author
Regular Article


Dynamic biochemical signal control in vitro is important in the study of cellular responses to dynamic biochemical stimuli in microenvironment in vivo. To this end, we designed a microfluidic single cell trapping channel with varying cross-sections. In this work, we analyzed the transport of dynamic biochemical signals in steady and non-reversing pulsatile flows in such a microchannel. By numerically solving the 2D time-dependent Taylor-Aris dispersion equation, we studied the transport mechanism of different signals with varying parameters. The amplitude spectrum in steady flow shows that the trapping microchannel acts as a low-pass filter due to the longitudinal dispersion. The input signal can be modulated nonlinearly by the pulsatile flow. In addition, the nonlinear modulation effects are affected by the pulsatile flow frequency, the pulsatile flow amplitude and the average flow rate. When the flow frequency is much smaller or larger than that of the biochemical signal, the signal can be transmitted more efficiently. Besides, smaller pulsatile flow amplitude and larger average flow rate can decrease the nonlinear modulation and promote the signal transmission. These results demonstrate that in order to accurately load a desired dynamic biochemical signal to the trapped cell to probe the cellular dynamic response to the dynamic biochemical stimulus, the transport mechanism of the signals in the microchannel should be carefully considered.

Graphical abstract


Flowing matter: Nonlinear Physics and Mesoscale Modeling 

Supplementary material

10189_2019_11793_MOESM1_ESM.pdf (230 kb)
Supplementary material


  1. 1.
    H.J. Agteresch, P.C. Dagnelie, J.W.O. van den Berg, J.P. Wilson, Drugs 58, 211 (1999)CrossRefGoogle Scholar
  2. 2.
    E.W. Young, D.J. Beebe, Chem. Soc. Rev. 39, 1036 (2010)CrossRefGoogle Scholar
  3. 3.
    D.E. Discher, D.J. Mooney, P.W. Zandstra, Science 324, 1673 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    J.E. Purvis, G. Lahav, Cell 152, 945 (2013)CrossRefGoogle Scholar
  5. 5.
    J.H. Levine, Y. Lin, M.B. Elowitz, Science 342, 1193 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    B. Cheng, M. Lin, G. Huang, Y. Li, B. Ji, G.M. Genin, V.S. Deshpande, T.J. Lu, F. Xu, Phys. Life Rev. 22, 88 (2017)CrossRefGoogle Scholar
  7. 7.
    X.L. Zhang, H.B. Yin, J.M. Cooper, S.J. Haswell, Anal. Bioanal. Chem. 390, 833 (2008)CrossRefGoogle Scholar
  8. 8.
    B. Kuczenski, W.C. Ruder, W.C. Messner, P.R. LeDuc, PLoS ONE 4, e4847 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Kim, S.D. Joshi, W.C. Messner, P.R. LeDuc, L.A. Davidson, PLoS ONE 6, e14624 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    H. Shin, S.K. Mahto, J.H. Kim, S.W. Rhee, BioChip J. 5, 214 (2011)CrossRefGoogle Scholar
  11. 11.
    L.F. Li, C. Xiang, K.R. Qin, Biomech. Model. Mechanobiol. 14, 979 (2015)CrossRefGoogle Scholar
  12. 12.
    K.R. Qin, C. Xiang, L.L. Cao, Biomech. Model. Mechanobiol. 10, 743 (2011)CrossRefGoogle Scholar
  13. 13.
    G. Paolisso, A.J. Scheen, D. Giugliano, S. Sgambato, A. Albert, M. Varricchio, F. Donofrio, P.J. Lefébvre, J. Clin. Endocrinol. Metab. 72, 607 (1991)CrossRefGoogle Scholar
  14. 14.
    X. Zhang, A. Daou, T.M. Truong, R. Bertram, M.G. Roper, Am. J. Physiol. Endocrinol. Metab. 301, E742 (2011)CrossRefGoogle Scholar
  15. 15.
    L. Quagliaro, L. Piconi, R. Assaloni, R. Da Ros, A. Maier, G. Zuodar, A. Ceriello, Atherosclerosis 183, 259 (2005)CrossRefGoogle Scholar
  16. 16.
    N. Hao, E.K. O'Shea, Nat. Struct. Mol. Biol. 19, 31 (2012)CrossRefGoogle Scholar
  17. 17.
    A.S. Hansen, E.K. O'Shea, Mol. Syst. Biol. 9, 704 (2013)CrossRefGoogle Scholar
  18. 18.
    A.S. Hansen, N. Hao, E.K. O'Shea, Nat. Protoc. 10, 1181 (2015)CrossRefGoogle Scholar
  19. 19.
    K. Ramser, D. Hanstorp, J. Biophoton. 3, 187 (2010)CrossRefGoogle Scholar
  20. 20.
    B.M. Taff, J. Voldman, Anal. Chem. 77, 7976 (2005)CrossRefGoogle Scholar
  21. 21.
    W. Liu, N. Dechev, I.G. Foulds, R. Burke, A. Parameswaran, E.J. Park, Lab Chip 9, 2381 (2009)CrossRefGoogle Scholar
  22. 22.
    F. Petersson, L. Åberg, A.M. Swärd-Nilsson, T. Laurell, Anal. Chem. 79, 5117 (2007)CrossRefGoogle Scholar
  23. 23.
    K. Chung, C.A. Rivet, M.L. Kemp, H. Lu, Anal. Chem. 83, 7044 (2011)CrossRefGoogle Scholar
  24. 24.
    L. He, A. Kniss, A. San-Miguel, T. Rouse, M.L. Kemp, H. Lu, Lab Chip 15, 1497 (2015)CrossRefGoogle Scholar
  25. 25.
    W.H. Tan, S. Takeuchi, Proc. Natl. Acad. Sci. U.S.A. 104, 1146 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    W.H. Tan, S. Takeuchi, Lab Chip 8, 259 (2008)CrossRefGoogle Scholar
  27. 27.
    L.M. Lee, A.P. Liu, Lab Chip 15, 264 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Tanyeri, E.M. Johnson-Chavarria, C.M. Schroeder, Appl. Phys. Lett. 96, 224101 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    M. Tanyeri, M. Ranka, N. Sittipolkul, C.M. Schroeder, Lab Chip 11, 1786 (2011)CrossRefGoogle Scholar
  30. 30.
    M. Yu, Z.Z. Chen, C. Xiang, B. Liu, H. Xie, K.R. Qin, Acta Mech. Sin. 32, 422 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Xie, Y. Wang, L. Chen, C. Mastrangelo, Lab Chip 8, 779 (2008)CrossRefGoogle Scholar
  32. 32.
    F. Azizi, C.H. Mastrangelo, Lab Chip 8, 907 (2008)CrossRefGoogle Scholar
  33. 33.
    F. Azizi, H. Lu, H.J. Chiel, C.H. Mastrangelo, J. Neurosci. Methods 192, 193 (2010)CrossRefGoogle Scholar
  34. 34.
    Y.J. Li, Y.Z. Li, T. Cao, K.R. Qin, J. Biomech. Eng. 135, 121011 (2013)CrossRefGoogle Scholar
  35. 35.
    Z.Z. Chen, W.M. Yuan, A. Aziz, Z.M. Gao, D.P. Zeng, B. Liu, K. Qin, Appl. Math. Mech. 38, 1481 (2017)CrossRefGoogle Scholar
  36. 36.
    Y.J. Li, T. Cao, K.R. Qin, Microfluid. Nanofluid. 22, 81 (2018)CrossRefGoogle Scholar
  37. 37.
    K.R. Qin, X.Q. Hu, Z.R. Liu, J. Hydrodyn., Ser. B 19, 113 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Lam, X. Chen, C. Yang, Microfluid. Nanofluid. 1, 218 (2005)CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Miao Yu
    • 1
  • Yong-Jiang Li
    • 2
  • Jin-Yu Shao
    • 3
  • Kai-Rong Qin
    • 2
    Email author
  1. 1.Department of Biomedical Engineering, Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina
  2. 2.School of Optoelectronic Engineering and Instrumentation ScienceDalian University of TechnologyDalianChina
  3. 3.Department of Biomedical EngineeringWashington University in St. LouisSt. LouisUSA

Personalised recommendations