Motility and cell shape roles in the rheology of growing bacteria cultures

  • R. Portela
  • P. L. Almeida
  • R. G. Sobral
  • C. R. LealEmail author
Regular Article
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications


Cell shape, size and self-motility appear as determinant intrinsic cell factors in the rheological behavior of living bacterial cultures during the growth process. In this work three different species were considered due to their differences on these intrinsic characteristics: two different strains of Staphylococcus aureus - strain COL and its isogenic cell wall autolysis mutant, RUSAL9 - both non-motile and Escherichia coli and Bacillus subtilis - both presenting intrinsic motility. In situ real-time rheology, was used to characterize the activity of growing bacteria, under steady-shear conditions, in particular the viscosity growth curve was measured, for a constant shear flow rate, presenting for all studied cultures, different and rich flow curves. These complex rheological behaviors are a consequence of two coupled effects: the cell density continuous increase and its changing interacting properties, where cell size and shape and intrinsic motility are major players.

Graphical abstract


Topical issue: Flowing Matter, Problems and Applications 


  1. 1.
    R. Portela, P.L. Almeida, P. Patricio, T. Cidade, R.G. Sobral, C.R. Leal, Phys. Rev. E 87, 030701 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    P. Patrício, P. Almeida, R. Portela, R. Sobral, I. Grilo, T. Cidade, C. Leal, Phys. Rev. E 90, 022720 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    B.G. Schuhmacher JS, Thormann KM, FEMS Microbiol. Rev. 39, 812 (2015)CrossRefGoogle Scholar
  4. 4.
    T. Atsumi, Y. Maekawa, T. Yamada, I. Kawagishi, Y. Imae, M. Homma, J. Bacteriol. 178, 5024 (1996)CrossRefGoogle Scholar
  5. 5.
    S.B. Guttenplan, S. Shaw, D.B. Kearns, Mol. Microbiol. 87, 211 (2013)CrossRefGoogle Scholar
  6. 6.
    E. Leifson, Atlas of Bacterial Flagellation (New York, Academic Press, 1971) pp. 225--234Google Scholar
  7. 7.
    D. Kearns, R. Losick, Mol. Microbiol. 49, 581 (2003)CrossRefGoogle Scholar
  8. 8.
    D.B. Kearns, R. Losick, Genes Dev. 19, 3083 (2015)CrossRefGoogle Scholar
  9. 9.
    K. Jarrell, M. McBride, Nat. Rev. Microbiol. 6, 466 (2008)CrossRefGoogle Scholar
  10. 10.
    K. Ottemann, J. Miller, Mol. Microbiol. 24, 1109 (1997)CrossRefGoogle Scholar
  11. 11.
    R.M. Harshey, T. Matsuyama, Proc. Natl. Acad. Sci. U.S.A. 91, 8831 (1994)CrossRefGoogle Scholar
  12. 12.
    K. Son, D. Brumley, R. Stocker, Nat. Rev. Microbiol. 13, 761 (2015)CrossRefGoogle Scholar
  13. 13.
    J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    M. Short, C. Solari, S. Ganguly et al., Proc. Natl. Acad. Sci. U.S.A. 103, 8315 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    T. Ishikawa, M. Simmonds, T. Pedley, J. Fluid Mech. 568, 119 (2006)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    J.G. Mitchell, K. Kogure, FEMS Microbiol. Rev. 55, 3 (2006)CrossRefGoogle Scholar
  17. 17.
    J. Gachelin, G. Miño, H. Berthet, A. Lindner, E. Clement, Phys. Rev. Lett. 110, 2681003 (2013)CrossRefGoogle Scholar
  18. 18.
    J. Gachelin, A. Rousselet, A. Lindner, E. Clement, New J. Phys. 16, 025003 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    H. López, J. Gachelin, C. Douarche, H. Auradou, E. Clement, Phys. Rev. Lett. 115, 028301 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    S. Sokolov, I. Aranson, Phys. Rev. Lett. 103, 148101 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    E. Clement, A. Lindner, C. Douarche, H. Auradou, EPJ ST 225, 2389 (2016)ADSGoogle Scholar
  22. 22.
    J. Gachelin, PhD Thesis, University Pierre et Marie Curie (2014)Google Scholar
  23. 23.
    S. Mueller, E.W. Llewellin, H.M. Mader, Proc. R. Soc. A 466, 1201 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    E.J.G. Pollitt, S.P. Diggle, Cell. Mol. Life Sci. 74, 2943 (2017)CrossRefGoogle Scholar
  25. 25.
    R. Portela, P. Patrício, P.L. Almeida, R.G. Sobral, J.M. Franco, C.R. Leal, Phys. Rev. E 94, 062402 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    S.R. Gill, D.E. Fouts, G.L. Archer, E.F. Mongodin, R.T. DeBoy, J. Ravel, I.T. Paulsen, J.F. Kolonay, L. Brinkac, M. Beanan, R.J. Dodson, S.C. Daugherty, R. Madupu, S.V. Angiuoli, A.S. Durkin, D.H. Haft, J. Vamathevan, H. Khouri, T. Utterback, C. Lee, G. Dimitrov, L.X. Jiang, H.Y. Qin, J. Weidman, K. Tran, K. Kang, I.R. Hance, K.E. Nelson, C.M. Fraser, J. Bacteriol. 187, 2426 (2005)CrossRefGoogle Scholar
  27. 27.
    T. Oshida, A. Tomasz, J. Bacteriol. 174, 4952 (1992)CrossRefGoogle Scholar
  28. 28.
    F. Kunst, N. Ogasawara, I. Moszer et al., Nature 390, 249 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    J. Newton, D. Schofield, J. Vlahopoulou, Y. Zhou, Biotechnol. Prog. 32, 1069 (2016)CrossRefGoogle Scholar
  30. 30.
    V.A. Martinez, R. Besseling, O.A. Croze, J. Tailleur, M. Reufer, J. Schwarz-Linek, L.G. Wilson, M.A. Bees, W.C. Poon, Biophys. J. 103, 1637 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    H. Berg, D.A. Brown, Nature 239, 500 (1972)ADSCrossRefGoogle Scholar
  32. 32.
    N. Mendelson, A. Bourque, K. Wilkening, K. Anderson, J. Watkins, J. Bacteriol. 181, 600 (1999)Google Scholar
  33. 33.
    J. Myers, B. Curtis, W. Curtis, BMC Biophys. 6, 4 (2013)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • R. Portela
    • 1
  • P. L. Almeida
    • 2
    • 3
  • R. G. Sobral
    • 1
  • C. R. Leal
    • 2
    • 3
    Email author
  1. 1.Laboratory of Molecular Microbiology of Bacterial Pathogens, UCIBIO@REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Área Departamental de FísicaISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de LisboaLisboaPortugal
  3. 3.CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations