Dielectric properties of wet steam based on a double relaxation time model

  • Jiangbo QianEmail author
  • Qingfeng Gu
  • Hao Yao
  • Wei Zeng
Regular Article


The last stages of most steam turbines operate in wet steam, resulting in water erosion of the rotor blades and the reduction of turbine efficiency. Accurate measurement of steam wetness is the key to ensure an efficient and stable operation of steam turbines. The equivalent complex permittivity model of wet steam was established by Maxwell-Wagner non-homogeneous dielectric theory, and the complex permittivity distribution of frequency and temperature changes of saturated water, dry saturated steam, and wet steam was derived. The measurement experiments verified the above properties of dry saturated steam and wet steam. The complex permittivity of the wet steam is similar to that for the dry saturated steam. The real part increases with increasing frequency and temperature. When the frequency is large or the temperature is low, the real part approaches 1. The imaginary part increases first and then decreases with the increase of frequency. In addition, with the increase of temperature, the imaginary part becomes larger. When the temperature is low, the imaginary part is close to 0, which is independent of the frequency.

Graphical abstract


Flowing Matter: Liquids and Complex Fluids 


  1. 1.
    M. Vatanmakan, E. Lakzian, M.R. Mahpeykar, Energy 147, 701 (2018)CrossRefGoogle Scholar
  2. 2.
    X. Yu, Z. Xiao, D. Xie, C. Wang, C. Wang, Int. J. Heat Mass Transfer 84, 642 (2015)CrossRefGoogle Scholar
  3. 3.
    G.I. Ilieva, Eng. Fail. Anal. 70, 90 (2016)CrossRefGoogle Scholar
  4. 4.
    V. Petr, M. Kolovratnik, Proc. Inst. Mech. Eng. Part A: J. Power Energy 228, 206 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Schatz, T. Eberle, M. Gruebel, J. Starzmann, D.M. Vogt, N. Suerken, J. Eng. Gas Turbines Power 137, 64 (2015)Google Scholar
  6. 6.
    J. Starzmann, M.V. Casey, J.F. Mayer, J. Power Energy 228, 216 (2013)CrossRefGoogle Scholar
  7. 7.
    D. Cirmirakis, A. Demosthenous, N. Saeidi, IEEE Sens. J. 13, 900 (2013)CrossRefGoogle Scholar
  8. 8.
    H. Matbouly, N. Boubekeur, F. Domingue, IEEE Trans. Microw. Theory Techn. 63, 4150 (2015)CrossRefGoogle Scholar
  9. 9.
    V.N. Makhlaichuk, N.P. Malomuzh, J. Mol. Liq. 253, 330 (2018)CrossRefGoogle Scholar
  10. 10.
    I.V. Vancea, Int. J. Geom. Methods Mod. Phys. 15, 147 (2017)Google Scholar
  11. 11.
    J. Zhou, F. Schmid, Eur. Phys. J. E 36, 216 (2013)CrossRefGoogle Scholar
  12. 12.
    L. Xu, J. Yuan, Appl. Therm. Eng. 76, 357 (2015)CrossRefGoogle Scholar
  13. 13.
    L. Frunza, A. Schönhals, H. Kosslick, Eur. Phys. J. E 26, 76 (2008)CrossRefGoogle Scholar
  14. 14.
    J.C. Del Valle, C. Arago, M.I. Marques, J.A. Gonzalo, Ferroelectrics 466, 166 (2014)CrossRefGoogle Scholar
  15. 15.
    E. Sanchez, C.F. Torres, P. Guillen, G. Larrazabal, Math. Comput. Model. 57, 2140 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Agarwal, A.K. Behera, M.K. Meshram, Appl. Phys. A 122, 1 (2016)Google Scholar
  17. 17.
    Z. Han, K. Yang, S. Tian, Turbine Technol. 549, (2003)Google Scholar
  18. 18.
    R.F. Tian, L.P. Du, P.F. Zhang, Asia-Pacific Power and Energy Engineering Conference (APPEEGoogle Scholar
  19. 19.
    H.J. Kretzschmar, A.H. Harvey, K. Knobloch, J. Eng. Gas Turbines Power 131, 4 (2009)CrossRefGoogle Scholar
  20. 20.
    K. Cui, Y. Song, H. Chen, J. Braz. Soc. Mech. Sci. Eng. 38, 1 (2016)CrossRefGoogle Scholar
  21. 21.
    Z. Han, J. Qian, International Conference on Electronic Measurement & Instruments (IEEE, 2009) ISBN:1-604-1-607Google Scholar
  22. 22.
    V. Hric, J. Halama, International Conference on Numerical Analysis and Applied Mathematics (AIP Publishing LLC, 2015)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Thermal Power Engineering & Technology Research CenterNorth China Electric Power UniversityBaodingChina

Personalised recommendations