Advertisement

Latex films with gradients in crosslink density created by small-molecule-based auto-stratification

  • Heike Römermann
  • Diethelm JohannsmannEmail author
Regular Article
  • 46 Downloads

Abstract.

A suitable balance of convective and diffusive transport of small molecules contained in the liquid phase of a drying latex film leads to auto-stratification and to functionally graded films. Differing from blends of latex particles, which may also experience drying-induced segregation, small molecules retain their mobility after the particles have touched and have formed an elastically coupled network. The use of a thickener, which turns the dispersion into a weak gel and prevents the free flow of particles, is compatible with this approach (and even advantageous). A problem with small molecules is fast diffusive equilibration of concentration differences. For this reason, composition gradients along the lateral direction, where the characteristic length scale is centimeters, are more easily achieved than gradients along the vertical. Addition of a thickener slows down the diffusion, which aids the development of gradients along the vertical. The application example chosen was the crosslinking agent adipic dihydrazide, ADH, which takes part in keto-hydrazide coupling. Its heterogeneous distribution produces a spatially variable crosslink-density in the dry film as evidenced by Raman microscopy. A side aspect of the work is an inward flow of serum, which is observed for high-Tg films. An explanation for this “anti-coffee-ring effect” --based on pore collapse driven by the polymer-water interfacial energy combined with finite polymer elasticity-- is proposed.

Graphical abstract

Keywords

Soft Matter: Functional Materials and Nanodevices 

References

  1. 1.
    J.L. Keddie, A.F. Routh, Fundamentals of Latex Film Formation: Processes and Properties (Springer, 2010)Google Scholar
  2. 2.
    M.A. Winnik, Curr. Opin. Colloid Interface Sci. 2, 192 (1997)CrossRefGoogle Scholar
  3. 3.
    P. Bacchin, David B. Brutin, A. Davaille, E. Di Giuseppe, X.D. Chen, I. Gergianakis, F. Giorgiutti-Dauphiné, L. Goehring, Y. Hallez, R. Heyd, R. Jeantet, C. Le Floch-Fouéré, M. Meireles, E. Mittelstaedt, C. Nicloux, L. Pauchard, M.-L. Saboungi, Eur. Phys. J. E 41, 94 (2018)CrossRefGoogle Scholar
  4. 4.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    W. Han, Z.Q. Lin, Ang. Chemie Int. Ed. 51, 1534 (2012)CrossRefGoogle Scholar
  6. 6.
    A.D. Eales, N. Dartnell, S. Goddard, A.F. Routh, J. Colloid Interface Sci. 458, 53 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    A.A.F. Georgiadis, M.W. Murray, J.L. Keddie, Soft Matter 7, 11098 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    D.J. Harris, H. Hu, J.C. Conrad, J.A. Lewis, Phys. Rev. Lett. 98, 148301 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    D.J. Harris, J.C. Conrad, J.A. Lewis, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 367, 5157 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    K.L. Rhudy, S. Su, H.R. Howell, M.W. Urban, Langmuir 24, 1808 (2008)CrossRefGoogle Scholar
  11. 11.
    V.V. Verkholantsev, Pigment Resin Technol. 32, 300 (2003)CrossRefGoogle Scholar
  12. 12.
    M.W. Urban, Eur. Coat. J. 1--2, 36 (2003)Google Scholar
  13. 13.
    D.J. Walbridge, Prog. Organic Coat. 28, 155 (1996)CrossRefGoogle Scholar
  14. 14.
    H. Luo, C.M. Cardinal, L.E. Scriven, L.F. Francis, Langmuir 24, 5552 (2008)CrossRefGoogle Scholar
  15. 15.
    B.J. Briscoe, S.K. Sinha, Materialwiss. Werkstofftech. 34, 989 (2003)CrossRefGoogle Scholar
  16. 16.
    G. Grundmeier, B. Rossenbeck, K.J. Roschmann, P. Ebbinghaus, M. Stratmann, Corros. Sci. 48, 3716 (2006)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    E.J. Mittemeijer, M.A.J. Somers, Thermochemical Surface Engineering of Steels: Improving Materials Performance (Woodhead Publishing, 2014)Google Scholar
  19. 19.
    C. Carr, E. Wallstom, Prog. Organic Coat. 28, 161 (1996)CrossRefGoogle Scholar
  20. 20.
    R.A.L. Jones, L.J. Norton, E.J. Kramer, F.S. Bates, P. Wiltzius, Phys. Rev. Lett. 66, 1326 (1991)ADSCrossRefGoogle Scholar
  21. 21.
    A. Budkowski, F. Scheffold, J. Klein, L.J. Fetters, J. Chem. Phys. 106, 719 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    A. Fortini, I. Martin-Fabiani, J.L. De La Haye, P.Y. Dugas, M. Lansalot, F. D’Agosto, E. Bourgeat-Lami, J.L. Keddie, R.P. Sear, Phys. Rev. Lett. 116, 118301 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Y.F. Tang, G.S. Grest, S.F. Cheng, Langmuir 34, 7161 (2018)CrossRefGoogle Scholar
  24. 24.
    J. Zhou, Y. Jiang, M. Doi, Phys. Rev. Lett. 118, 108002 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    A.F. Routh, W.B. Zimmerman, Chem. Eng. Sci. 59, 2961 (2004)CrossRefGoogle Scholar
  26. 26.
    R.E. Trueman, E.L. Domingues, S.N. Emmett, M.W. Murray, A.F. Routh, J. Colloid Interface Sci. 377, 207 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    J.W. Taylor, M.A. Winnik, JCT Res. 1, 163 (2004)Google Scholar
  28. 28.
    J.L. Keddie, N. Kessel, D.R. Illsley, J. Coat. Technol. Res. 5, 285 (2008)CrossRefGoogle Scholar
  29. 29.
    S.S. Voyutskii, Z.M. Ustinova, J. Adhes. 9, 39 (1977)CrossRefGoogle Scholar
  30. 30.
    P. Bakker, D. Mestach, Surf. Coat. Int. B 84, 271 (2001)CrossRefGoogle Scholar
  31. 31.
    C.G. Koukiotis, M.M. Karabela, I.D. Sideridou, Prog. Org. Coat. 75, 106 (2012)CrossRefGoogle Scholar
  32. 32.
    J. Brandrup, E.H. Immergut, E.A. Grulke, Polymer Handbook, 4th edition (Wiley, Hoboken, 1999)Google Scholar
  33. 33.
    Münzing GmbH, Rheology Modifiers TAFIGEL product description, https://doi.org/www.munzing.com/fileadmin/_migrated/content_uploads/TAFIGEL-PUR-Rheology-Modifiers_01.pdf (09.08.2018)
  34. 34.
    M. Schulz, H. Römermann, K. Pohl, C. Chindawong, D. Johannsmann, Soft Mater. 13, 138 (2015)CrossRefGoogle Scholar
  35. 35.
    K. Pohl, R. König, H. Römermann, M. Schulz, D. Johannsmann, Langmuir 30, 9384 (2014)CrossRefGoogle Scholar
  36. 36.
    S.T. Eckersley, A. Rudin, J. Appl. Polym. Sci. 48, 1369 (1993)CrossRefGoogle Scholar
  37. 37.
    P. Vink, T.L. Bots, Prog. Org. Coat. 28, 173 (1996)CrossRefGoogle Scholar
  38. 38.
    M. Schulz, H. Römermann, K. Pohl, C. Chindawong, D. Johannsmann, Soft Mater. 13, 138 (2015)CrossRefGoogle Scholar
  39. 39.
    L. Goehring, W.J. Clegg, A.F. Routh, Langmuir 26, 9269 (2010)CrossRefGoogle Scholar
  40. 40.
    L. Pauchard, C. Allain, Europhys. Lett. 62, 897 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Physical ChemistryClausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations