Advertisement

Influence of anisotropic nanoparticles on the deposition pattern of an evaporating droplet

  • Xuemin Ye
  • Long Fei
  • Lifang Lu
  • Chunxi LiEmail author
Regular Article
  • 108 Downloads

Abstract.

The suppression or enhancement of the “coffee ring” effect depends on whether nanoparticles easily adhere to the gas-liquid interface and particle shape. To obtain deposition patterns of suspensions of nanoparticles strongly deviating from spheres, which is less studied in the literature, prolate ellipsoidal and cylindrical rod-shaped particles with a minimum aspect ratio of 4 are selected. Dynamic viscosity, which is a function of particle shape and volume fraction, is introduced into the evolution equations for film thickness and particle concentration. The nanoparticle deposition features and the contact line dynamics are examined numerically, and the effect of particle shape on the drying process is analysed. The results show that the contact line is in the depinning state during the droplet shrinkage, while the concentration and effective layer thickness of nanoparticles in the ring-formation region decrease with time, and the deposition band widens. The deposition ring height increases, and the recession of the contact line slows down with increasing aspect ratio. This means that for nanoparticles deviating strongly from spheres and not easily adhering to the gas-liquid interface, the “coffee ring” effect is enhanced when the suspension dries. A larger aspect ratio leads to a more obvious “coffee ring” feature.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    R.D. Deegan, O. Bakajin, T.F. Dupont et al., Phys. Rev. E 62, 756 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Y.M. Zhang, Y.M. Qian, Z.T. Liu, Z.G. Li, D.Y. Zang, Eur. Phys. J. E 37, 84 (2014)CrossRefGoogle Scholar
  3. 3.
    D. Mampallil, H.B. Eral, Adv. Colloid Interface Sci. 252, 38 (2018)CrossRefGoogle Scholar
  4. 4.
    F. Giorgiutti-Dauphiné, L. Pauchard, Eur. Phys. J. E 41, 32 (2018)CrossRefGoogle Scholar
  5. 5.
    R.D. Deegan, Phys. Rev. E 61, 475 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    H. Hu, R.G. Larson, J. Phys. Chem. B 110, 7090 (2006)CrossRefGoogle Scholar
  8. 8.
    B.M. Weon, J.H. Je, Phys. Rev. E. 87, 013003 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    D. Kim, S. Jeong, B.K. Park, J. Moon, Appl. Phys. Lett. 89, 264101 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    T. Still, P.J. Yunker, A.G. Yodh, Langmuir 28, 4984 (2012)CrossRefGoogle Scholar
  11. 11.
    W.D. Ristenpart, P.G. Kim, C. Domingues, J. Wan, H.A. Stone, Phys. Rev. Lett. 99, 234502 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    A. Askounis, D. Orejon, V. Koutsos, K. Sefiane, M.E.R. Shanahan, Soft Matter 7, 4152 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    P.J. Yunker, T. Still, M.A. Lohr, A.G. Yodh, Nature 476, 308 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    P.J. Yunker, M.A. Lohr, T. Still, A. Borodin, D.J. Durian, A.G. Yodh, Phys. Rev. Lett. 110, 1 (2012)Google Scholar
  15. 15.
    L’. Fraštia, A.J. Archer, U. Thiele, Soft Matter 8, 11363 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    V.R. Dugyala, M.G. Basavaraj, Langmuir 30, 8680 (2014)CrossRefGoogle Scholar
  17. 17.
    R. Bhardwaj, X. Fang, P. Somasundaran, D. Attinger, Langmuir 26, 7833 (2010)CrossRefGoogle Scholar
  18. 18.
    Y.J. Zhang, Z.T. Liu, D.Y. Zang, Y.M. Qian, K.J. Lin, Sci. China: Phys. Mech. 56, 1712 (2013)Google Scholar
  19. 19.
    Y.J. Zhang, F.X. Ye, J. Dai, B.F. He, D.Y. Zang, Acta Phys. Sin. 66, 173 (2017)Google Scholar
  20. 20.
    D. Tian, Y. Song, L. Jiang, Chem. Soc. Rev. 42, 5184 (2013)CrossRefGoogle Scholar
  21. 21.
    M. Dicuangco, S. Dash, J.A. Weibel, S.V. Garimella, Appl. Phys. Lett. 104, 201604 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    U. Thiele, Adv. Colloid Interface Sci. 206, 399 (2014)CrossRefGoogle Scholar
  23. 23.
    Q. Li, P. Zhou, H.J. Yan, Langmuir 32, 9389 (2016)CrossRefGoogle Scholar
  24. 24.
    H. Kusumaatmaja, J.M. Yeomans, Langmuir 23, 956 (2007)CrossRefGoogle Scholar
  25. 25.
    S. Maheshwari, L. Zhang, Y. Zhu, H.C. Chang, Phys. Rev. Lett. 100, 044503 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    H.Y. Erbil, Adv. Colloid Interface Sci. 222, 275 (2015)CrossRefGoogle Scholar
  27. 27.
    B. Gay, Langmuir 31, 7544 (2015)CrossRefGoogle Scholar
  28. 28.
    W.B. Zhang, L.G. Miu, T.X. Yu, A.L. Ji, Acta Phys. Sin. 62, 361 (2013)Google Scholar
  29. 29.
    Z. Sun, C.J. Xiao, L.P. Zhou, X.Z. Du, Y.P. Yang, J. Eng. Thermophys. V37, 2602 (2016)Google Scholar
  30. 30.
    C. Nobile, L. Carbone, A. Fiore, R. Cingolani, L. Manna, R. Krahne, J. Phys.: Condens. Matter 21, 264013 (2009)ADSGoogle Scholar
  31. 31.
    T. Ming, X.S. Kou, H.J. Chen, T. Wang, H.L. Tam, K.W. Cheah, J.Y. Chen, J.F. Wang, Angew. Chem. 47, 9685 (2008)CrossRefGoogle Scholar
  32. 32.
    C.S. Hodges, Y. Ding, B. Simon, J. Colloid Interface Sci. 352, 99 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    D. Mampallil, H.B. Eral, Adv. Colloid Interface Sci. 252, 38 (2018)CrossRefGoogle Scholar
  34. 34.
    X. Zhong, A. Crivoi, F. Duan, Adv. Colloid Interface Sci. 217, 13 (2015)CrossRefGoogle Scholar
  35. 35.
    R. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, 1998)Google Scholar
  36. 36.
    R. Simha, J. Chem. Phys. 44, 25 (1940)CrossRefGoogle Scholar
  37. 37.
    Y.Y. Tarasevich, I.V. Vodolazskaya, O.P. Isakova, Prog. Colloid Polym. Sci. 289, 1015 (2011)CrossRefGoogle Scholar
  38. 38.
    A.V. Lyushnin, A.A. Golovin, L.M. Pismen, Phys. Rev. E 65, 021602 (2002)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    S.S.L. Peppin, J.A.W. Elliott, M.G. Worster, J. Fluid Mech. 554, 147 (2006)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    S.S.L. Peppin, J.A.W. Elliott, M.G. Worster, Phys. Fluids 17, 053301 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    L. Espin, S. Kumar, Langmuir 30, 11966 (2014)CrossRefGoogle Scholar
  42. 42.
    N. Samid-Merzel, S.G. Lipson, D.S. Tannhauser, Phys. Rev. E 57, 2906 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    A. Sharma, A.T. Jameel, J. Colloid Interface Sci. 161, 190 (1993)ADSCrossRefGoogle Scholar
  44. 44.
    A. Mavromoustaki, L. Wang, J. Wong, A.L. Bertozzi, Nonlinearity 31, 3151 (2018)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    F. Hecht, User Guide (INRIA, Rocquencourt, 1998)Google Scholar
  46. 46.
    F. Hecht, J. Numer. Math. 20, 251 (2012)MathSciNetCrossRefGoogle Scholar
  47. 47.
    P. Takhistov, H.C. Chang, Ind. Eng. Chem. Res. 41, 6256 (2002)CrossRefGoogle Scholar
  48. 48.
    V.R. Dugyala, M.G. Basavaraj, J. Phys. Chem. B 119, 3860 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.North China Electric Power UniversityBaodingChina
  2. 2.Taiyuan Heating Power CorporationTaiyuanChina

Personalised recommendations