Surface flow profiles for dry and wet granular materials by Particle Tracking Velocimetry; the effect of wall roughness

  • Sudeshna RoyEmail author
  • Bert J. Scheper
  • Harmen Polman
  • Anthony R. Thornton
  • Deepak R. Tunuguntla
  • Stefan Luding
  • Thomas Weinhart
Open Access
Regular Article
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications


Two-dimensional Particle Tracking Velocimetry (PTV) is a promising technique to study the behaviour of granular flows. The aim is to experimentally determine the free surface width and position of the shear band from the velocity profile to validate simulations in a split-bottom shear cell geometry. The position and velocities of scattered tracer particles are tracked as they move with the bulk flow by analyzing images. We then use a new technique to extract the continuum velocity field, applying coarse-graining with the postprocessing toolbox MercuryCG on the discrete experimental PTV data. For intermediate filling heights, the dependence of the shear (or angular) velocity on the radial coordinate at the free surface is well fitted by an error function. From the error function, we get the width and the centre position of the shear band. We investigate the dependence of these shear band properties on filling height and rotation frequencies of the shear cell for dry glass beads for rough and smooth wall surfaces. For rough surfaces, the data agrees with the existing experimental results and theoretical scaling predictions. For smooth surfaces, particle-wall slippage is significant and the data deviates from the predictions. We further study the effect of cohesion on the shear band properties by using small amount of silicon oil and glycerol as interstitial liquids with the glass beads. While silicon oil does not lead to big changes, glycerol changes the shear band properties considerably. The shear band gets wider and is situated further inward with increasing liquid saturation, due to the correspondingly increasing trend of particles to stick together.

Graphical abstract


Topical issue: Flowing Matter, Problems and Applications 


  1. 1.
    T. Kawaguchi, Adv. Powder Technol. 21, 235 (2010)CrossRefGoogle Scholar
  2. 2.
    K.M. Hill, A. Caprihan, J. Kakalios, Phys. Rev. Lett. 78, 50 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    M. Nakagawa, S. Altobelli, A. Caprihan, E. Fukushima, E.-K. Jeong, Exp. Fluids 16, 54 (1993)CrossRefGoogle Scholar
  4. 4.
    E. Ehrichs, H. Jaeger, G.S. Karczmar, J.B. Knight, V.Y. Kuperman, S.R. Nagel, Science 267, 1632 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    G.W. Baxter, R. Behringer, T. Fagert, G.A. Johnson, Phys. Rev. Lett. 62, 2825 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    C.F. Harwood, Powder Technol. 16, 51 (1977)CrossRefGoogle Scholar
  7. 7.
    G. Rátkai, Powder Technol. 15, 187 (1976)CrossRefGoogle Scholar
  8. 8.
    M. Guler, T.B. Edil, P.J. Bosscher, J. Comput. Civil Eng. 13, 116 (1999)CrossRefGoogle Scholar
  9. 9.
    H. Capart, D. Young, Y. Zech, Exp. Fluids 32, 121 (2002)CrossRefGoogle Scholar
  10. 10.
    D. Bonamy, F. Daviaud, L. Laurent, Phys. Fluids 14, 1666 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    R. Lueptow, A. Akonur, T. Shinbrot, Exp. Fluids 28, 183 (2000)CrossRefGoogle Scholar
  12. 12.
    G.A. Bokkers, M. van Sint Annaland, J.A.M. Kuipers, Powder Technol. 140, 176 (2004)CrossRefGoogle Scholar
  13. 13.
    J.A. Laverman, I. Roghair, M.v.S. Annaland, H. Kuipers, The Canadian J. Chem. Eng. 86, 523 (2008)CrossRefGoogle Scholar
  14. 14.
    C. Zeilstra, J. Collignon, M. Van der Hoef, N. Deen, J. Kuipers, Powder Technol. 184, 166 (2008)CrossRefGoogle Scholar
  15. 15.
    A. Jarray, V. Magnanimo, S. Luding, Powder Technol. 341, 126 (2019)CrossRefGoogle Scholar
  16. 16.
    H.-T. Chou, C.-F. Lee, Granular Matter 11, 13 (2009)CrossRefGoogle Scholar
  17. 17.
    W.-L. Yang, S.-S. Hsiau, Chem. Eng. Sci. 61, 6085 (2006)CrossRefGoogle Scholar
  18. 18.
    C.-C. Liao, S.-S. Hsiau, Chem. Eng. Sci. 64, 2562 (2009)CrossRefGoogle Scholar
  19. 19.
    S. Shirsath, J. Padding, H. Clercx, J. Kuipers, Chem. Eng. Sci. 134, 312 (2015)CrossRefGoogle Scholar
  20. 20.
    B. Sokoray-Varga, J. Józsa, Period. Polytech. Civil Eng. 52, 63 (2008)CrossRefGoogle Scholar
  21. 21.
    W. Nitsche, C. Dobriloff, Imaging Measurement Methods for Flow Analysis: Results of the DFG Priority Programme 1147 ``Imaging Measurement Methods for Flow Analysis'' 2003-2009, Vol. 106 (Springer Science & Business Media, 2009)Google Scholar
  22. 22.
    Y.-C. Lei, W.-H. Tien, J. Duncan, M. Paul, N. Ponchaut, C. Mouton, D. Dabiri, T. Rösgen, J. Hove, Exp. Fluids 53, 1251 (2012)CrossRefGoogle Scholar
  23. 23.
    C. Jiang, Z. Dong, X. Wang, J. Arid Land 9, 727 (2017)CrossRefGoogle Scholar
  24. 24.
    C. Veje, D.W. Howell, R. Behringer, Phys. Rev. E 59, 739 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    B. Utter, R.P. Behringer, Phys. Rev. E 69, 031308 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    V. Jasti, C.F. Higgs III, Phys. Rev. E 78, 041306 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    D. Fenistein, M. van Hecke, Nature 425, 256 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    T. Unger, J. Török, J. Kertész, D.E. Wolf, Phys. Rev. Lett. 92, 214301 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    A. Ries, D.E. Wolf, T. Unger, Phys. Rev. E 76, 051301 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    J.A. Dijksman, Granular Media: Flow & Agitations, PhD Thesis (Granular and Disordered Media, Leiden Institute of Physics, Faculty of Science, Leiden University, 2009)Google Scholar
  31. 31.
    J.A. Dijksman, M. van Hecke, Soft Matter 6, 2901 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    X. Cheng, J.B. Lechman, A. Fernandez-Barbero, G.S. Grest, H.M. Jaeger, G.S. Karczmar, M.E. Möbius, S.R. Nagel, Phys. Rev. Lett. 96, 38001 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    F. Spaepen, Acta Metall. 25, 407 (1977)CrossRefGoogle Scholar
  34. 34.
    J. Li, F. Spaepen, T. Hufnagel, Philos. Mag. A 82, 2623 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    L. Bécu, S. Manneville, A. Colin, Phys. Rev. Lett. 96, 138302 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    P. Chaudhuri, L. Berthier, L. Bocquet, Phys. Rev. E 85, 021503 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    J. Vermant, Curr. Opin. Colloid Interface Sci. 6, 489 (2001)CrossRefGoogle Scholar
  38. 38.
    R. Höhler, S. Cohen-Addad, J. Phys.: Condens. Matter 17, R1041 (2005)ADSGoogle Scholar
  39. 39.
    P. Coussot, G. Ovarlez, Eur. Phys. J. E 33, 183 (2010)CrossRefGoogle Scholar
  40. 40.
    N. Estrada, A. Lizcano, A. Taboada, Phys. Rev. E 82, 011303 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    R. Mani, D. Kadau, D. Or, H.J. Herrmann, Phys. Rev. Lett. 109, 248001 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    R. Schwarze, A. Gladkyy, F. Uhlig, S. Luding, Granular Matter 15, 455 (2013)CrossRefGoogle Scholar
  43. 43.
    J. Yuan, Q. Zhang, B. Li, X. Zhao, Bull. Eng. Geol. Environ. 72, 107 (2013)CrossRefGoogle Scholar
  44. 44.
    A. Singh, V. Magnanimo, K. Saitoh, S. Luding, Phys. Rev. E 90, 022202 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    I. Goldhirsch, Granular Matter 12, 239 (2010)CrossRefGoogle Scholar
  46. 46.
    T. Weinhart, A.R. Thornton, S. Luding, O. Bokhove, Granular Matter 14, 289 (2012)CrossRefGoogle Scholar
  47. 47.
    A.R. Thornton, T. Weinhart, S. Luding, O. Bokhove, Int. J. Mod. Phys. C 23, 1240014 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    T. Weinhart, A.R. Thornton, S. Luding, O. Bokhove, Granular Matter 14, 531 (2012)CrossRefGoogle Scholar
  49. 49.
    T. Weinhart, R. Hartkamp, A.R. Thornton, S. Luding, Phys. Fluids 25, 070605 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    D.R. Tunuguntla, A.R. Thornton, T. Weinhart, Comput. Part. Mech. 3, 349 (2016)CrossRefGoogle Scholar
  51. 51.
    D.R. Tunuguntla, T. Weinhart, A.R. Thornton, in ALERT Doctoral School 2017: Discrete Element Modeling (2017) p. 181, ISBN 978-2-9542517-9-0Google Scholar
  52. 52.
    D.R. Tunuguntla, T. Weinhart, A.R. Thornton, Comput. Part. Mech. 4, 387 (2017)CrossRefGoogle Scholar
  53. 53.
    T. Weinhart, D. Tunuguntla, M. van Schrojenstein-Lantman, A. van der Horn, I. Denissen, C. Windows-Yule, A. de Jong, A. Thornton, in International Conference on Discrete Element Methods (Springer, 2016) pp. 1353--1360Google Scholar
  54. 54.
    T. Weinhart, D.R. Tunuguntla, M.P.V.S. Lantman, I.F. Denissen, C.R.W. Yule, H. Polman, J.M. Tsang, B. Jin, L. Orefice, K. Van Der Vaart, in V International Conference on Particle-Based Methods-Fundamentals and Applications, PARTICLES 2017 (International Center for Numerical Methods in Engineering, Barcelona, 2017)Google Scholar
  55. 55.
    A.R. Thornton, D. Krijgsman, A. te Voortwis, V. Ogarko, S. Luding, R. Fransen, S. Gonzalez, O. Bokhove, O.I. Imole, T. Weinhart, in 6th International Conference on Discrete Element Methods and Related Computational Techniques, DEM6 (Colorado School of Mines, 2013)Google Scholar
  56. 56.
    S. Roy, A. Singh, S. Luding, T. Weinhart, Comput. Part. Mech. 3, 449 (2016)CrossRefGoogle Scholar
  57. 57.
    S. Roy, S. Luding, T. Weinhart, New J. Phys. 19, 043014 (2017)ADSCrossRefGoogle Scholar
  58. 58.
    S. Roy, S. Luding, T. Weinhart, Phys. Rev. E 98, 052906 (2018)ADSCrossRefGoogle Scholar
  59. 59.
    Surface tension values of some common test liquids for surface energy analysis,
  60. 60.
    T. Weigert, S. Ripperger, Part. Part. Syst. Charact. 16, 238 (1999)CrossRefGoogle Scholar
  61. 61.
    S. Roy, Hydrodynamic Theory of Wet Particle Systems, PhD Thesis (Multi-Scale Mechanics, Faculty of Engineering Technology, University of Twente, 2018)Google Scholar
  62. 62.
    P. Schall, M. van Hecke, Annu. Rev. Fluid Mech. 42, 67 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    D. Fenistein, J.W. van de Meent, M. van Hecke, Phys. Rev. Lett. 92, 094301 (2004)ADSCrossRefGoogle Scholar
  64. 64.
    P. Jop, Phys. Rev. E 77, 032301 (2008)ADSCrossRefGoogle Scholar
  65. 65.
    J.C. Crocker, D.G. Grier, J. Colloid Interface Sci. 179, 298 (1996)ADSCrossRefGoogle Scholar
  66. 66.
    D. Blair, E. Dufrense, The matlab particle tracking code repository,
  67. 67.
    D. Umbach, K.N. Jones, IEEE Trans. Instrum. Meas. 52, 1881 (2003)CrossRefGoogle Scholar
  68. 68.
    P.R. Bevington, D.K. Robinson, J.M. Blair, A.J. Mallinckrodt, S. McKay, Comput. Phys. 7, 415 (1993)ADSCrossRefGoogle Scholar
  69. 69.
    L.Y. Chang, N.S. Pollard, J. Biomech. 40, 1392 (2007)CrossRefGoogle Scholar
  70. 70.
    S. Luding, Part. Sci. Technol. 26, 33 (2008)ADSCrossRefGoogle Scholar
  71. 71.
    J. Török, T. Unger, J. Kertész, D. Wolf, Phys. Rev. E 75, 011305 (2007)ADSCrossRefGoogle Scholar
  72. 72.
    M. Depken, J.B. Lechman, M. van Hecke, W. van Saarloos, G.S. Grest, EPL 78, 58001 (2007)ADSCrossRefGoogle Scholar
  73. 73.
    D.L. Henann, K. Kamrin, Proc. Natl. Acad. Sci. U.S.A. 110, 6730 (2013)ADSCrossRefGoogle Scholar
  74. 74.
    F. Alonso-Marroquın, I. Vardoulakis, Powders and Grains 2005, Vol. 1 (Taylor and Francis Group, London, 2005) p. 701Google Scholar
  75. 75.
    F. Alonso-Marroquin, S. Luding, H. Herrmann, I. Vardoulakis, Phys. Rev. E 71, 051304 (2005)ADSCrossRefGoogle Scholar
  76. 76.
    F. Guillard, B. Marks, I. Einav, Sci. Rep. 7, 8155 (2017)ADSCrossRefGoogle Scholar
  77. 77.
    G. Lian, C. Thornton, M.J. Adams, J. Colloid Interface Sci. 161, 138 (1993)ADSCrossRefGoogle Scholar
  78. 78.
    S. Herminghaus, Adv. Phys. 54, 221 (2005)ADSCrossRefGoogle Scholar
  79. 79.
    G. Ovarlez, S. Rodts, A. Ragouilliaux, P. Coussot, J. Goyon, A. Colin, Phys. Rev. E 78, 036307 (2008)ADSCrossRefGoogle Scholar
  80. 80.
    S. Roy, S. Luding, W.K. Otter, A.R. Thornton, T. Weinhart, in preparationGoogle Scholar
  81. 81.
    H. Shi, S. Roy, T. Weinhart, V. Magnanimo, S. Luding, submitted to Granular Matter (2018)Google Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Sudeshna Roy
    • 1
    Email author
  • Bert J. Scheper
    • 1
  • Harmen Polman
    • 1
  • Anthony R. Thornton
    • 1
  • Deepak R. Tunuguntla
    • 1
  • Stefan Luding
    • 1
  • Thomas Weinhart
    • 1
  1. 1.Multi-Scale MechanicsEngineering Technology (ET) and MESA + University of TwenteAE EnschedeThe Netherlands

Personalised recommendations