Advertisement

Thin viscoelastic dewetting films of Jeffreys type subjected to gravity and substrate interactions

  • Valeria Barra
  • Shahriar AfkhamiEmail author
  • Lou Kondic
Regular Article
  • 70 Downloads
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications

Abstract.

This work presents a study of the interfacial dynamics of thin viscoelastic films subjected to the gravitational force and substrate interactions induced by the disjoining pressure, in two spatial dimensions. The governing equation is derived as a long-wave approximation of the Navier-Stokes equations for incompressible viscoelastic liquids under the effect of gravity, with the Jeffreys model for viscoelastic stresses. For the particular cases of horizontal or inverted planes, the linear stability analysis is performed to investigate the influence of the physical parameters involved on the growth rate and length scales of instabilities. Numerical simulations of the nonlinear regime of the dewetting process are presented for the particular case of an inverted plane. Both gravity and the disjoining pressure are found to affect not only the length scale of instabilities, but also the final configuration of dewetting, by favoring the formation of satellite droplets, that are suppressed by the slippage with the solid substrate.

Graphical abstract

Keywords

Topical issue: Flowing Matter, Problems and Applications 

References

  1. 1.
    P.-G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)MathSciNetCrossRefGoogle Scholar
  2. 2.
    R. Scardovelli, S. Zaleski, Annu. Rev. Fluid Mech. 31, 567 (1999)CrossRefGoogle Scholar
  3. 3.
    G. Tryggvason, R. Scardovelli, S. Zaleski, Direct Numerical Simulations of Gas-Liquid Multiphase Flows (Cambridge University Press, Cambridge, 2011)Google Scholar
  4. 4.
    H. Jeffreys, The Earth: Its Origin, History, and Physical Constitution (Cambridge University Press, Cambridge, 1952)Google Scholar
  5. 5.
    J. Israelachvili, Intermolecular & Surface Forces (Academic Press, London, 1985)Google Scholar
  6. 6.
    R.A. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, Vol. 1: Fluid mechanics (Wiley-Interscience, Toronto, 1987)Google Scholar
  7. 7.
    O. Reynolds, Philos. Trans. R. Soc. London 177, 157 (1886)CrossRefGoogle Scholar
  8. 8.
    A. Oron, S. Davis, G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)CrossRefGoogle Scholar
  9. 9.
    F. Brochard-Wyart, G. Debregeas, R. Fondecave, P. Martin, Macromolecules 30, 1211 (1997)CrossRefGoogle Scholar
  10. 10.
    G. Reiter, Phys. Rev. Lett. 68, 75 (1992)CrossRefGoogle Scholar
  11. 11.
    S.A. Safran, J. Klein, J. Phys. II 3, 749 (1993)Google Scholar
  12. 12.
    S. Gabriele, S. Sclavons, G. Reiter, P. Damman, Phys. Rev. Lett. 96, 156105 (2006)CrossRefGoogle Scholar
  13. 13.
    M. Rauscher, A. Münch, B. Wagner, R. Blossey, Eur. Phys. J. E 17, 373 (2005)CrossRefGoogle Scholar
  14. 14.
    R. Blossey, A. Münch, M. Rauscher, B. Wagner, Eur. Phys. J. E 20, 267 (2006)CrossRefGoogle Scholar
  15. 15.
    R. Blossey, Thin Liquid Films, Dewetting and Polymer Flow (Springer, New York, 2012)Google Scholar
  16. 16.
    V. Barra, S. Afkhami, L. Kondic, J. Non-Newton. Fluid Mech. 237, 26 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    G. Tomar, V. Shankar, S.K. Shukla, A. Sharma, G. Biswas, Eur. Phys. J. E 20, 185 (2006)CrossRefGoogle Scholar
  18. 18.
    M. Benzaquen, T. Salez, E. Raphaël, EPL 106, 36003 (2014)CrossRefGoogle Scholar
  19. 19.
    J.C. Maxwell, Philos. Trans. R. Soc. Lond. 157, 49 (1867)CrossRefGoogle Scholar
  20. 20.
    H.E. Huppert, Nature 300, 427 (1982)CrossRefGoogle Scholar
  21. 21.
    D.-Y. Hsieh, Phys. Fluids 8, 1785 (1965)MathSciNetCrossRefGoogle Scholar
  22. 22.
    L.W. Schwartz, Phys. Fluids A: Fluid 1, 443 (1989)CrossRefGoogle Scholar
  23. 23.
    R.E. Kelly, D.A. Goussis, S.P. Lin, F.K. Hsu, Phys. Fluids A: Fluid 1, 819 (1989)CrossRefGoogle Scholar
  24. 24.
    D.-Y. Hsieh, Phys. Fluids A: Fluid 2, 1145 (1990)CrossRefGoogle Scholar
  25. 25.
    L. Kondic, SIAM Rev. 45, 95 (2003)MathSciNetCrossRefGoogle Scholar
  26. 26.
    J.M. Gomba, J. Diez, R. Gratton, A.G. Gonzlez, L. Kondic, Phys. Rev. E 76, 046308 (2007)CrossRefGoogle Scholar
  27. 27.
    H.J. Kull, Phys. Rep. 206, 197 (1991)CrossRefGoogle Scholar
  28. 28.
    S.P. Kapitza, Zh. Eksp. Teor. Fiz. 18, 3 (1948)Google Scholar
  29. 29.
    N. Kofman, W. Rohlfs, F. Gallaire, B. Scheid, C. Ruyer-Quil, Int. J. Multiphase Flow 104, 286 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    M.A. Lam, L.J. Cummings, T.-S. Lin, L. Kondic, J. Eng. Math. 94, 97 (2015)CrossRefGoogle Scholar
  31. 31.
    M.S. Tshehla, Math. Probl. Eng. 2013, 754782 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    D. Picchi, P. Poesio, A. Ullmann, N. Brauner, Int. J. Multiphase Flow 97, 109 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    B.J. Kaus, Becker T.W., Geophys. J. Int. 168, 843 (2006)CrossRefGoogle Scholar
  34. 34.
    V. Barra, S.A. Chester, S. Afkhami, Comput. Fluids 175, 36 (2018)MathSciNetCrossRefGoogle Scholar
  35. 35.
    A. Münch, B. Wagner, M. Rauscher, R. Blossey, Eur. Phys. J. E 20, 365 (2006)CrossRefGoogle Scholar
  36. 36.
    R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, Oxford, 1999)Google Scholar
  37. 37.
    D.A. Siginer, Stability of Non-Linear Constitutive Formulations for Viscoelastic Fluids (Springer, New York, 2014)Google Scholar
  38. 38.
    F. Mainardi, G. Spada, Eur. Phys. J. ST 193, 133 (2011)CrossRefGoogle Scholar
  39. 39.
    D. Gutierrez-Lemini, Engineering Viscoelasticity (Springer, New York, 2014)Google Scholar
  40. 40.
    R. Fetzer, K. Jacobs, A. Münch, B. Wagner, T.P. Witelski, Phys. Rev. Lett. 95, 127801 (2005)CrossRefGoogle Scholar
  41. 41.
    A. Münch, B. Wagner, T.P. Witelski, J. Eng. Math. 53, 359 (2005)CrossRefGoogle Scholar
  42. 42.
    J.A. Diez, L. Kondic, Phys. Fluids 19, 072107 (2007)CrossRefGoogle Scholar
  43. 43.
    G. Teletzke, H.T. Davis, L.E. Scriven, Chem. Eng. Commun. 55, 41 (1987)CrossRefGoogle Scholar
  44. 44.
    I. Seric, S. Afkhami, L. Kondic, J. Fluid Mech. 755, R1 (2014)CrossRefGoogle Scholar
  45. 45.
    K. Mahady, S. Afkhami, L. Kondic, J. Comput. Phys. 294, 243 (2015)MathSciNetCrossRefGoogle Scholar
  46. 46.
    T.-S. Lin, L. Kondic, Phys. Fluids 22, 052105 (2010)CrossRefGoogle Scholar
  47. 47.
    J.A. Diez, L. Kondic, J. Comput. Phys. 183, 274 (2002)MathSciNetCrossRefGoogle Scholar
  48. 48.
    A.L. Bertozzi, Not. Am. Math. Soc. 45, 689 (1998)Google Scholar
  49. 49.
    M.A. Lam, L.J. Cummings, T.-S. Lin, L. Kondic, J. Fluid Mech. 841, 925 (2018)MathSciNetCrossRefGoogle Scholar
  50. 50.
    K.B. Glasner, T.P. Witelski, Phys. Rev. E 67, 016302 (2003)CrossRefGoogle Scholar
  51. 51.
    J.R. De Bruyn, Phys. Rev. A 46, R4500 (1992)CrossRefGoogle Scholar
  52. 52.
    T. Qian, X.P. Wang, P. Sheng, Commun. Math. Sci. 1, 333 (2003)MathSciNetCrossRefGoogle Scholar
  53. 53.
    T.G. Myers, SIAM Rev. 3, 441 (1998)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations