Advertisement

Hysteresis of the drag force of an intruder moving into a granular medium

  • A. SeguinEmail author
Regular Article
  • 31 Downloads

Abstract.

We numerically investigate the force-displacement relation of a moving intruder initially at rest into a granular medium. Our model granular medium is composed of one layer of coplanar polydisperse spheres subjected to a gravity field. The interactions between the grains are modelled by Hertzian contacts to which a viscous damping is applied. Moving it horizontally and with alternating positive and negative velocity, we recover a hysteresis of the force-displacement curve. Considering that the flow is plastic as the yield strength has been reached, we describe the transient part of the flow around the intruder. We show that the drag stress increases as its distance to an ultimate drag stress \( \sigma_{u}\) with a typical deformation \( \varepsilon_{c}\): the drag stress-strains curve appears to exponentially decay as it saturates to this ultimate drag stress. This protocol of deformation highlights that the deformation of the grains is negligible compared to the deformation of the packing, i.e. related to the irreversible displacements of grains allowing the intruder to pass through. Simultaneously, the lift force is constant on average during the displacement of the intruder. We then give the different scaling laws of the yield strength, this ultimate drag stress, the characteristic deformation of the packing and the lift stress. Finally, we recover the complete hysteresis cycle of the drag force around the intruder.

Graphical abstract

Keywords

Flowing Matter: Granular Materials 

References

  1. 1.
    M.P. O’Reilly, S.F. Brown, Cyclic Loading of Soils (Blackie, 1991)Google Scholar
  2. 2.
    D. Howell, R. Behringer, C. Veje, Phys. Rev. Lett. 82, 5241 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    GDR MiDi, Eur. Phys. J. E 14, 341 (2004)CrossRefGoogle Scholar
  4. 4.
    S.C. du Pont, R. Fischer, P. Gondret, B. Perrin, M. Rabaud, Phys. Rev. Lett. 94, 048003 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    P. Jop, Y. Forterre, O. Pouliquen, Nature 441, 727 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    C.S. Chang, A. Misra, S.S. Sundaram, Soil Dyn. Earthq. Eng. 10, 201 (1991)CrossRefGoogle Scholar
  7. 7.
    J. Sun, S. Sundaresan, J. Fluid Mech. 682, 590 (2011)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    N. Khalili, M. Habte, S. Valliappan, Int. J. Numer. Methods Eng. 63, 1939 (2005)CrossRefGoogle Scholar
  9. 9.
    M. Nicolas, P. Duru, O. Pouliquen, Eur. Phys. J. E 3, 309 (2000)CrossRefGoogle Scholar
  10. 10.
    J. Zhang, T. Majmudar, A. Tordesillas, R. Behringer, Granular Matter 12, 159 (2010)CrossRefGoogle Scholar
  11. 11.
    M. Bouzid, M. Trulsson, P. Claudin, E. Clément, B. Andréotti, Phys. Rev. Lett. 111, 238301 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    M. Bouzid, A. Izzet, M. Trulsson, E. Clément, P. Claudin, B. Andreotti, Eur. Phys. J. E 38, 125 (2015)CrossRefGoogle Scholar
  13. 13.
    A. Seguin, Y. Bertho, P. Gondret, J. Crassous, EPL 88, 44002 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    A. Seguin, Y. Bertho, P. Gondret, Phys. Rev. E 78, 010301 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    C.S. O’Hern, S.A. Langer, A.J. Liu, S.R. Nagel, Phys. Rev. Lett. 88, 075507 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    C.S. O’Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Phys. Rev. E 68, 011306 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Ding, N. Gravish, D.I. Goldman, Phys. Rev. Lett. 106, 028001 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    A. Seguin, A. Lefebvre-Lepot, S. Faure, P. Gondret, Eur. Phys. J. E 39, 63 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Takehara, S. Fujimoto, K. Okumura, EPL 92, 44003 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    J.E. Hilton, A. Tordesillas, Phys. Rev. E 88, 062203 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Takehara, K. Okumura, Phys. Rev. Lett. 112, 148001 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    T. Faug, Eur. Phys. J. E 38, 34 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Seguin, C. Coulais, F. Martinez, Y. Bertho, P. Gondret, Phys. Rev. E 93, 012904 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    F. Guillard, Y. Forterre, O. Pouliquen, Phys. Rev. Lett. 110, 138303 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    F.Q. Potiguar, Y. Ding, Phys. Rev. E 88, 012204 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    I. Albert, J.G. Sample, A.J. Morss, S. Rajagopalan, A.L. Barabási, P. Schiffer, Phys. Rev. E 64, 061303 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    Z. Peng, X. Xu, K. Lu, M. Hou, Phys. Rev. E 80, 021301 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    A. Seguin, Y. Bertho, P. Gondret, J. Crassous, Phys. Rev. Lett. 107, 048001 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    D.J. Costantino, J. Bartell, K. Scheidler, P. Schiffer, Phys. Rev. E 83, 011305 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    A. Seguin, Y. Bertho, F. Martinez, J. Crassous, P. Gondret, Phys. Rev. E 87, 012201 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    M.B. Stone, R. Barry, D.P. Bernstein, M.D. Pelc, Y.K. Tsui, P. Schiffer, Phys. Rev. E 70, 041301 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    R. Candelier, O. Dauchot, Phys. Rev. Lett. 103, 128001 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    R. Candelier, O. Dauchot, Phys. Rev. E 81, 011304 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    A. Fiege, M. Grob, A. Zippelius, Granular Matter 14, 247 (2012)CrossRefGoogle Scholar
  35. 35.
    A. Le Bouil, A. Amon, J.C. Sangleboeuf, H. Orain, P. Bésuelle, G. Viggiani, P. Chasle, J. Crassous, Granular Matter 16, 1 (2014)CrossRefGoogle Scholar
  36. 36.
    J.R. de Bruyn, A.M. Walsh, Can. J. Phys. 82, 439 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    R. Albert, M.A. Pfeifer, A.L. Barabási, P. Schiffer, Phys. Rev. Lett. 82, 205 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    D.L. Henann, K. Kamrin, Phys. Rev. Lett. 113, 178001 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    D. Berzi, J.T. Jenkins, Soft Matter 11, 4799 (2015)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire FASTUniversité Paris-Sud, CNRS, Université Paris-SaclayOrsayFrance

Personalised recommendations