Advertisement

Determining phoretic mobilities with Onsager’s reciprocal relations: Electro- and thermophoresis revisited

  • Jérôme BurelbachEmail author
  • Holger Stark
Regular Article
Part of the following topical collections:
  1. Thermal Non-Equilibrium Phenomena in Soft Matter

Abstract.

We use a hydrodynamic reciprocal approach to phoretic motion to derive general expressions for the electrophoretic and thermophoretic mobility of weakly charged colloids in aqueous electrolyte solutions. Our approach shows that phoretic motion can be understood in terms of the interfacial transport of thermodynamic excess quantities that arises when a colloid is kept stationary inside a bulk fluid flow. The obtained expressions for the mobilities are extensions of previously known results as they can account for different hydrodynamic boundary conditions at the colloidal surface, irrespective of how the colloid-fluid interaction range compares to the colloidal radius.

Graphical abstract

Keywords

Topical issue: Thermal Non-Equilibrium Phenomena in Soft Matter 

References

  1. 1.
    M.v. Smoluchowski, Bull. Int. Acad. Sci. Crac. 3, 184 (1903)Google Scholar
  2. 2.
    E. Hückel, Phys. Z. 25, 204 (1924)Google Scholar
  3. 3.
    B. Derjaguin, Y. Yalamov, J. Colloid Sci. 20, 555 (1965)CrossRefGoogle Scholar
  4. 4.
    E. Ruckenstein, J. Colloid Interface Sci. 83, 77 (1981)CrossRefGoogle Scholar
  5. 5.
    J.N. Agar, C.Y. Mou, J.L. Lin, J. Phys. Chem. 93, 2079 (1989)CrossRefGoogle Scholar
  6. 6.
    J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)CrossRefGoogle Scholar
  7. 7.
    A. Parola, R. Piazza, Eur. Phys. J. E 15, 255 (2004)CrossRefGoogle Scholar
  8. 8.
    A. Ajdari, L. Bocquet, Phys. Rev. Lett. 96, 186102 (2006)CrossRefGoogle Scholar
  9. 9.
    A. Würger, Phys. Rev. Lett. 98, 138301 (2007)CrossRefGoogle Scholar
  10. 10.
    J.K. Dhont, S. Wiegand, S. Duhr, D. Braun, Langmuir 23, 1674 (2007)CrossRefGoogle Scholar
  11. 11.
    A.S. Khair, T.M. Squires, Phys. Fluids 21, 042001 (2009)CrossRefGoogle Scholar
  12. 12.
    J.F. Brady, J. Fluid Mech. 667, 216 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    S. Semenov, M. Schimpf, J. Phys. Chem. B 119, 3510 (2015)CrossRefGoogle Scholar
  14. 14.
    J. Morthomas, A. Würger, J. Phys.: Condens. Matter 21, 035103 (2009)Google Scholar
  15. 15.
    P. Gaspard, R. Kapral, J. Chem. Phys. 148, 134104 (2018)CrossRefGoogle Scholar
  16. 16.
    R. Piazza, J. Phys.: Condens. Matter 16, S4195 (2004)Google Scholar
  17. 17.
    J.K.G. Dhont, W.J. Briels, Eur. Phys. J. E 25, 61 (2008)CrossRefGoogle Scholar
  18. 18.
    J. Burelbach, D. Frenkel, I. Pagonabarraga, E. Eiser, Eur. Phys. J. E 41, 7 (2018)CrossRefGoogle Scholar
  19. 19.
    S.R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics (Courier Corporation, 2013)Google Scholar
  20. 20.
    R. Barber, D. Emerson, Analytical Solution of Low Reynolds Number Slip Flow Past a Sphere (Council for the Central Laboratory of the Research Councils, 2000)Google Scholar
  21. 21.
    N.V. Churaev, B.V. Derjaguin, V.M. Muller, Surface Forces (Consultants Bureau, New York, 1987)Google Scholar
  22. 22.
    S. Fayolle, T. Bickel, A. Würger, Phys. Rev. E 77, 041404 (2008)CrossRefGoogle Scholar
  23. 23.
    J. Morthomas, A. Würger, Eur. Phys. J. E 27, 425 (2008)CrossRefGoogle Scholar
  24. 24.
    L. Onsager, Phys. Rev. Lett. 37, 405 (1931)Google Scholar
  25. 25.
    L. Onsager, Phys. Rev. Lett. 38, 2265 (1931)Google Scholar
  26. 26.
    J. Burelbach, PhD Thesis, University of Cambridge (2018)  https://doi.org/10.17863/CAM.21479
  27. 27.
    L. Landau, E. Lifshitz, Fluid Mechanics (London, 1959)Google Scholar
  28. 28.
    J. Burelbach, D.B. Brückner, D. Frenkel, E. Eiser, Soft Matter 14, 7446 (2018)CrossRefGoogle Scholar
  29. 29.
    R. Piazza, A. Parola, J. Phys.: Condens. Matter 20, 153102 (2008)Google Scholar
  30. 30.
    A. Würger, Rep. Prog. Phys. 73, 126601 (2010)CrossRefGoogle Scholar
  31. 31.
    S.A. Putnam, D.G. Cahill, Langmuir 21, 5317 (2005)CrossRefGoogle Scholar
  32. 32.
    L.D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, J. Sykes, Electrodynamics of Continuous Media, Vol. 8 (Elsevier, 2013)Google Scholar
  33. 33.
    A. Würger, Phys. Rev. Lett. 101, 108302 (2008)CrossRefGoogle Scholar
  34. 34.
    S. Duhr, D. Braun, Proc. Natl. Acad. Sci. U.S.A. 2006, 19678 (2006)CrossRefGoogle Scholar
  35. 35.
    M. Reichl, PhD Thesis, Ludwig Maximilian University of Munich (2014)Google Scholar
  36. 36.
    L. Galla, A.J. Meyer, A. Spiering, A. Sischka, M. Mayer, A.R. Hall, P. Reimann, D. Anselmetti, Nano Lett. 14, 4176 (2014)CrossRefGoogle Scholar
  37. 37.
    N. Takeyama, K. Nakashima, J. Solut. Chem. 17, 305 (1988)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations