Advertisement

Numerical investigation of buoyancy balance effect on thermosolutal convection in a horizontal annular porous cavity

  • Ahmed Ja
  • Abdelkhalek CheddadiEmail author
Regular Article
  • 22 Downloads

Abstract.

The effect of cooperating and opposite buoyancy forces on the flow structure and the heat and mass transfer rates is numerically investigated in a horizontal annular space of radius ratio R = 2, filled with a porous medium saturated by a binary fluid. Uniform and constant temperatures and concentrations are imposed along the active walls. The steady-state solutions have been obtained using the discretization of the governing equations with the Centered Finite Difference method based on the ADI scheme. The influence of the dimensionless thermosolutal parameters, namely Darcy-Rayleigh numbe, Ra, Lewis number, Le, and buoyancy ratio, N , is investigated. The study is focused on the effect of Ra and Le on the steady-state solution under the cooperating (N = 2) and opposite (N = -2) buoyancy forces cases. The increase in Rayleigh number in the opposite case results in a full development of the convection and gives rise to multicellular flow structures. The critical Rayleigh number values corresponding to the onset of this flow pattern are determined for a large range of Lewis number values by using two initial conditions types. On the other hand, the unicellular flow dominates the cooperating case whatever the Darcy-Rayleigh and Lewis numbers values. The heat and solutal transfer behaviors are also considered.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    I. Pop, D.B. Ingham, Convective Heat Transfer: Mathematical and Computational Modeling of Viscous Fluids and Porous Media (Pergamon, Oxford, 2001)Google Scholar
  2. 2.
    D.A. Nield, A. Bejan, Convection in Porous Media, fourth edition (Springer-Verlag, New York, 2013)Google Scholar
  3. 3.
    K. Vafai, Handbook of Porous Media, third edition (Taylor & Francis, New York, 2015)Google Scholar
  4. 4.
    O.V. Trevisan, A. Bejan, Int. J. Heat Mass Transfer 28, 1597 (1985)CrossRefGoogle Scholar
  5. 5.
    O.V. Trevisan, A. Bejan, Int. J. Heat Mass Transfer 29, 403 (1986)CrossRefGoogle Scholar
  6. 6.
    S. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, New York, 1980)Google Scholar
  7. 7.
    M. Mamou, P. Vasseur, E. Bilgen, Int. J. Heat Mass Transfer 38, 1787 (1995)CrossRefGoogle Scholar
  8. 8.
    L. Kalla, P. Vasseur, R. Bennacer, H. Beji, R. Duval, Int. Commun. Heat Mass Transfer 28, 1 (2001)CrossRefGoogle Scholar
  9. 9.
    M. Bourich, A. Amahmid, M. Hasnaoui, Energy Convers. Manag. 45, 1655 (2004)CrossRefGoogle Scholar
  10. 10.
    F. Alavyoon, Int. J. Heat Mass Transfer 36, 2479 (1993)CrossRefGoogle Scholar
  11. 11.
    M. Marcoux, M.C. Charrier-Mojtabi, M. Azaiez, Int. J. Heat Mass Transfer 42, 2313 (1999)CrossRefGoogle Scholar
  12. 12.
    H. Beji, R. Bennacer, R. Duval, P. Vasseur, Numer. Heat Transfer, Part A: Appl. 36, 153 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    J.C. Kalita, A.K. Dass, Int. J. Heat Mass Transfer 5, 357 (2011)Google Scholar
  14. 14.
    A. Amahmid, M. Hasnaoui, M. Mamou, P. Vasseur, Heat Mass Transfer 35, 409 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    M.C. Charrier-Mojtabi, M. Karimi-Fard, M. Azaiez, A. Mojtabi, J. Porous Media 1, 107 (1985)CrossRefGoogle Scholar
  16. 16.
    Z. Alloui, P. Vasseur, Comput. Therm. Sci. Int. J. 3, 407 (2011)CrossRefGoogle Scholar
  17. 17.
    A. Ja, A. Cheddadi, Fluid Dyn. Mater. Process. 13, 235 (2017)Google Scholar
  18. 18.
    K. Ragui, A. Boutra, R. Bennacer, N. Labsi, Y.K. Benkahla, Heat Mass Transfer 54, 2061 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    J.W. Taunton, E.N. Lightfoot, Phys. Fluids 15, 748 (1972)ADSCrossRefGoogle Scholar
  20. 20.
    J.P.B. Mota, E. Saatdjian, J. Heat Transfer 116, 621 (1994)CrossRefGoogle Scholar
  21. 21.
    J. Belabid, A. Cheddadi, Phys. Chem. News 70, 67 (2013)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Thermal Systems and Real Flows, Mohammadia School of EngineersMohammed V University in RabatAgdal, RabatMorocco

Personalised recommendations