Ultrasound transmission through monodisperse 2D microfoams

  • Lorène ChampougnyEmail author
  • Juliette Pierre
  • Antoine Devulder
  • Valentin Leroy
  • Marie-Caroline Jullien
Regular Article


While the acoustic properties of solid foams have been abundantly characterized, sound propagation in liquid foams remains poorly understood. Recent studies have investigated the transmission of ultrasound through three-dimensional polydisperse liquid foams (Pierre et al., 2013, 2014, 2017). However, further progress requires to characterize the acoustic response of better-controlled foam structures. In this work, we study experimentally the transmission of ultrasounds through a single layer of monodisperse bubbles generated by microfluidics techniques. In such a material, we show that the sound velocity is only sensitive to the gas phase. Nevertheless, the structure of the liquid network has to be taken into account through a transfer parameter analogous to the one in a layer of porous material. Finally, we observe that the attenuation cannot be explained by thermal dissipation alone, but is compatible with viscous dissipation in the gas pores of the monolayer.

Graphical abstract


Soft Matter: Self-organisation and Supramolecular Assemblies 


  1. 1.
    K. Attenborough, Phys. Rep. 82, 179 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    R. Raspet, S.K. Griffiths, J. Acoust. Soc. Am. 74, 1757 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    J. Pierre, F. Elias, V. Leroy, Ultrasonics 53, 622 (2013)CrossRefGoogle Scholar
  4. 4.
    J. Pierre, B. Dollet, V. Leroy, Phys. Rev. Lett. 112, 148307 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Nicolás Mujica, Stéphan Fauve, Phys. Rev. E 66, 021404 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    M. Monloubou, A. Saint-Jalmes, B. Dollet, I. Cantat, EPL 112, 34001 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    J. Pierre, C. Gaulon, C. Derec, F. Elias, V. Leroy, Eur. Phys. J. E 40, 73 (2017)CrossRefGoogle Scholar
  8. 8.
    S. Kosgodagan Acharige, F. Elias, C. Derec, Soft Matter 10, 8341 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    C. Derec, V. Leroy, D. Kaurin, L. Arbogast, C. Gay, F. Elias, EPL 112, 34004 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    S.L. Anna, N. Bontoux, H.A. Stone, Appl. Phys. Lett. 82, 364 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    P. Garstecki, I. Gitlin, W. DiLuzio, G.M. Whitesides, E. Kumacheva, H.A. Stone, Appl. Phys. Lett. 85, 2649 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    P. Marmottant, J.-P. Raven, Soft Matter 5, 3385 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    J.-P. Raven, Generation, Flow and Manipulation of a Microfoam, PhD Thesis, Université Joseph-Fourier-Grenoble I, 2007Google Scholar
  14. 14.
    S.J. Cox, E. Janiaud, Philos. Mag. Lett. 88, 693 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    C. Gay, P. Rognon, D. Reinelt, F. Molino, Eur. Phys. J. E 34, 2 (2011)CrossRefGoogle Scholar
  16. 16.
    W. Drenckhan, D. Langevin, Curr. Opin. Colloid Interface Sci. 15, 341 (2010)CrossRefGoogle Scholar
  17. 17.
    V. Miralles, B. Selva, I. Cantat, M.-C. Jullien, Phys. Rev. Lett. 112, 238302 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    A. Huerre, V. Miralles, M.-C. Jullien, Soft Matter 10, 6888 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    I. Cantat, S. Cohen-Addad, F. Elias, F. Graner, R. Höhler, O. Pitois, F. Rouyer, A. Saint-Jalmes, Foams: Structure and Dynamics (OUP Oxford, 2013)Google Scholar
  20. 20.
    J. Marchalot, J. Lambert, I. Cantat, P. Tabeling, M.-C. Jullien, EPL 83, 64006 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    A. van der Net, L. Blondel, A. Saugey, W. Drenckhan, Colloids Surf. A: Physicochem. Eng. Asp. 309, 159 (2007)CrossRefGoogle Scholar
  22. 22.
    T. Gaillard, C. Honorez, M. Jumeau, F. Elias, W. Drenckhan, Colloids Surf. A: Physicochem. Eng. Asp. 473, 68 (2015)CrossRefGoogle Scholar
  23. 23.
    K.A. Brakke, Exp. Math. 1, 141 (1992)MathSciNetCrossRefGoogle Scholar
  24. 24.
    G. Hernández, Fabry-Pérot Interferometers, Number 3 (Cambridge University Press, 1988)Google Scholar
  25. 25.
    L. Brekhovskikh, Waves in Layered Media, Vol. 16 (Elsevier, 2012). Google Scholar
  26. 26.
    J. Allard, N. Atalla, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, second edition (John Wiley & Sons, 2009)Google Scholar
  27. 27.
    R.B. Chapman, M.S. Plesset, J. Basic Eng. 93, 373 (1971)CrossRefGoogle Scholar
  28. 28.
    G. Kirchhoff, Ann. Phys. 210, 177 (1868)CrossRefGoogle Scholar
  29. 29.
    D.E. Weston, Proc. Phys. Soc., Sect. B 66, 695 (1953)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lorène Champougny
    • 1
    Email author
  • Juliette Pierre
    • 2
  • Antoine Devulder
    • 1
  • Valentin Leroy
    • 3
  • Marie-Caroline Jullien
    • 1
  1. 1.Gulliver, CNRS, ESPCI ParisPSL Research UniversityParisFrance
  2. 2.Institut Jean Le Rond d’Alembert, CNRSSorbonne Universités, UPMC Univ. Paris 6ParisFrance
  3. 3.Laboratoire Matière et Systèmes Complexes, CNRSUniversité Paris-DiderotParisFrance

Personalised recommendations