Low concentrated carbonaceous suspensions assisted with carboxymethyl cellulose as electrode for electrochemical flow capacitor

  • Janno ToropEmail author
  • Faiza Summer
  • Vahur Zadin
  • Tuomas Koiranen
  • Alar Jänes
  • Enn Lust
  • Alvo Aabloo
Regular Article
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications


The search for efficient energy storage devices has recently led to the introduction of a fluid electrode material employing electrochemical flow capacitors (EFC). Unlike the classical solid electrode film containing capacitors, where the electrode material is fixed to the current collectors and capacitance is therefore limited with an active surface area of porous electrode, the flow electrodes offer new design opportunities which enable fully continuous charging/discharging processes as well as easily scalable systems. Here we describe the successful incorporation of the carboxymethyl cellulose sodium salt (CMC-Na) assisted carbonaceous suspension electrode in aqueous media for the electrochemical flow capacitor concept and demonstrate the electrochemical charge storage in flowable electrodes using a cation conductive membrane as separator in a double-pipe flow-electrode module. Experimental results were combined with computer simulations (FEM) to specify limiting processes EFC charging. The flow-electrode slurry is based on 0.1 M Na2SO4, 3 wt% CMC-Na and activated carbon powder suspended in water. During continuous operation of the system, the capacitance of the flow electrode reached to 0.3 F/L providing the energy and current densities of 7 mWh/kg and 56 mW/L, respectively. Additionally, we report a 70% round trip efficiency calculated during charging and discharging of the cell between 0 V and +0.75 V, while applying the current density of 1.6 mA/kg. The double-pipe flow-electrode module is easily expandable for transportation of large volumes of electrode material.

Graphical abstract


Topical issue: Flowing Matter, Problems and Applications 

Supplementary material

10189_2019_11766_MOESM1_ESM.pdf (128 kb)
Supplementary material


  1. 1.
    V. Presser, C.R. Dennison, J. Campos, K.W. Knehr, E.C. Kumbur, Y. Gogotsi, Adv. Energy Mater. 2, 895 (2012)CrossRefGoogle Scholar
  2. 2.
    M. Boota, K.B. Hatzell, E.C. Kumbur, Y. Gogotsi, ChemSusChem 8, 835 (2015)CrossRefGoogle Scholar
  3. 3.
    H. Yoon, H.-J. Kim, J.J. Yoo, C.-Y. Yoo, J.H. Park, Y.A. Lee, W.K. Cho, Y.-K. Han, D.H. Kim, J. Mater. Chem. A 3, 23323 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Kolodziej, K. Fic, E. Frackowiak, J. Mater. Chem. A 3, 22923 (2015)CrossRefGoogle Scholar
  5. 5.
    B. Dunn, H. Kamath, J.-M. Tarascon, Science 334, 928 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    S. Sasi, A. Murali, S.V. Nair, A.S. Nair, K.R.V. Subramanian, J. Mater. Chem. A 3, 2717 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Bin Tan, J.-M. Lee, J. Mater. Chem. A 1, 14814 (2013)CrossRefGoogle Scholar
  8. 8.
    L. Yang, L.R. Hou, Y.W. Zhang, C.Z. Yuan, Mater. Lett. 97, 97 (2013)CrossRefGoogle Scholar
  9. 9.
    J.R. Miller, P. Simon, Science 321, 651 (2008)CrossRefGoogle Scholar
  10. 10.
    F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 26, 2219 (2014)CrossRefGoogle Scholar
  11. 11.
    F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 26, 2283 (2014)CrossRefGoogle Scholar
  12. 12.
    J. Torop, V. Palmre, M. Arulepp, T. Sugino, K. Asaka, A. Aabloo, Carbon 49, 3113 (2011)CrossRefGoogle Scholar
  13. 13.
    M. Arulepp, J. Leis, M. Lätt, F. Miller, K. Rumma, E. Lust, A.F. Burke, J. Power Sources 162, 1460 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    B. Dunn, H. Kamath, J.-M. Tarascon, Science 334, 928 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    K.B. Hatzell, M. Boota, E.C. Kumbur, Y. Gogotsi, J. Electrochem. Soc. 162, A5007 (2015)CrossRefGoogle Scholar
  16. 16.
    N.-S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Angew. Chem. Int. Ed. Engl. 51, 9994 (2012)CrossRefGoogle Scholar
  17. 17.
    D. Liu, S. Yu, Y. Shen, H. Chen, Z. Shen, S. Zhao, S. Fu, Y. Yu, B. Bao, Ind. Eng. Chem. Res. 54, 12570 (2015)CrossRefGoogle Scholar
  18. 18.
    A. Jänes, H. Kurig, E. Lust, Carbon 45, 1226 (2007)CrossRefGoogle Scholar
  19. 19.
    A. Davies, A. Yu, Can. J. Chem. Eng. 89, 1342 (2011)CrossRefGoogle Scholar
  20. 20.
    A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 157, 11 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A. Kvit, S. Kaskel, G. Yushin, ACS Nano 4, 1337 (2010)CrossRefGoogle Scholar
  22. 22.
    Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Adv. Mater. 23, 4828 (2011)CrossRefGoogle Scholar
  23. 23.
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)CrossRefGoogle Scholar
  24. 24.
    J.G. Batelaan, C.G. Van Ginkel, F. Balk, Handb. Environ. Chem. 3, 329 (1992)Google Scholar
  25. 25.
    J. Lee, D. Weingarth, I. Grobelsek, V. Presser, Energy Technol. 4, 75 (2016)CrossRefGoogle Scholar
  26. 26.
    G.J. Hills, D.J. Schiffrin, Electrochemistry, edited by G.J. Hills, Vol. 2 (Royal Society of Chemistry, Cambridge, 1972)Google Scholar
  27. 27.
    S. Porada, J. Lee, D. Weingarth, V. Presser, Electrochem. Commun. 48, 178 (2014)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Janno Torop
    • 1
    Email author
  • Faiza Summer
    • 1
  • Vahur Zadin
    • 1
  • Tuomas Koiranen
    • 2
  • Alar Jänes
    • 3
  • Enn Lust
    • 3
  • Alvo Aabloo
    • 1
  1. 1.University of Tartu, Institute of Technology, IMS LabTartuEstonia
  2. 2.Lappeenranta University of Technology, LUT ChemtechLappeenrantaFinland
  3. 3.Institute of ChemistryUniversity of TartuTartuEstonia

Personalised recommendations