Association equilibria of divalent ions on the surface of liposomes formed from phosphatidylcholine

  • Izabela DobrzyńskaEmail author
Open Access
Regular Article


Divalent ions, in particular calcium ions, constitute important macroelements in living organisms. They are also found in cell membranes, i.e., ensuring their stabilization or participating in synaptic transmission of nerve impulses. The aim of this work is to describe the interactions of divalent ions, such as Ca2+, Ba2+, and Sr2+, in electrolytes with the functional groups on the surface of liposomes formed from phosphatidylcholine (PC). Microelectrophoresis is used to determine the surface charge density as a function of pH. The interactions between ions found in solution and the functional groups of PC are described with the use of a seven-equilibrium mathematical model. Using this model along with experimental data on the charge density of the membrane surface, the association constants characterizing this equilibrium are determined. These parameters are used to calculate the theoretical model curves. The validity of the proposed model is confirmed by comparing the theoretically calculated changes in charge density on the liposome surface with the experimental results.

Graphical abstract


Soft Matter: Colloids and Nanoparticles 


  1. 1.
    P.R. Cullis, M.J. Hope, M.B. Bally, T.D. Madden, L.D. Mayer, D.B. Fenske, Biochim. Biophys. Acta 1331, 187 (1997)CrossRefGoogle Scholar
  2. 2.
    C. Kent, Biochim. Biophys. Acta 1733, 53 (2005)CrossRefGoogle Scholar
  3. 3.
    S. McLaughlin, N. Mulrine, T. Gresalfi, G. Vaio, A. McLaughlin, J. Gen. Physiol. 77, 445 (1981)CrossRefGoogle Scholar
  4. 4.
    P.M. Mcdonald, J. Seeling, Biochemistry 27, 6769 (1988)CrossRefGoogle Scholar
  5. 5.
    B. Klasczyk, V. Knecht, R. Lipowsky, R. Dimova, Langmuir 26, 18951 (2010)CrossRefGoogle Scholar
  6. 6.
    I. Dobrzyńska, J. Kotyńska, Z. Figaszewski, Chem. Anal. 52, 931 (2007)Google Scholar
  7. 7.
    I. Dobrzyńska, J. Kotyńska, B. Szachowicz-Petelska, Z. Figaszewski, Soft Mater. 15, 113 (2017)CrossRefGoogle Scholar
  8. 8.
    J. Kotyńska, I. Dobrzyńska, Z.A. Figaszewski, Eur. Biophys. J. 46, 149 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Rappolt, K. Pressl, G. Pabst, P. Laggner, Biochim. Biophys. Acta Biomembr. 1372, 389 (1998)CrossRefGoogle Scholar
  10. 10.
    S. Garcia-Manyes, G. Oncins, F. Sanz, Biophys. J. 89, 1812 (2005)CrossRefGoogle Scholar
  11. 11.
    J. Kotyńska, I. Dobrzyńska, Z.A. Figaszewski, J. Bioenerg. Biomembr. 40, 637 (2008)CrossRefGoogle Scholar
  12. 12.
    H.C. Lee, R. Aarhus, T.F. Walseth, Science 261, 352 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    S.L. Mironov, M.U. Juri, Neurosci. Lett. 112, 184 (1990)CrossRefGoogle Scholar
  14. 14.
    H.T. McMahon, D.G. Nicholls, J. Neurochem. 61, 110 (1993)CrossRefGoogle Scholar
  15. 15.
    E.A. Nalefski, J.J. Falke, Protein Sci. 5, 2375 (1996)CrossRefGoogle Scholar
  16. 16.
    W.G. Regehr, M.R. Carey, A.R. Best, Neuron 63, 154 (2009)CrossRefGoogle Scholar
  17. 17.
    T.S. Sihra, D. Piomelli, R.A. Nichols, J. Neurochem. 61, 1220 (1993)CrossRefGoogle Scholar
  18. 18.
    M. Verhage, J.J.H. Hens, P.N. De Graan, F. Boomsma, V.M. Wiegant, F.H. Lopes da Silva, W.H. Gispen, W.E. Ghijsen, Eur. J. Pharmacol. 291, 397 (1995)CrossRefGoogle Scholar
  19. 19.
    A.E. Alexander, P. Johnson, Colloid Sciences (Clarendon Press, Oxford, 1949)Google Scholar
  20. 20.
    J. Inczedy, Analytical Applications of Complex Equilibrium (Ellis Horwood, 1976)Google Scholar
  21. 21.
    A. McLaughlin, C. Grathwohl, S. McLaughlin, Biochim. Biophys. Acta 513, 338 (1978)CrossRefGoogle Scholar
  22. 22.
    S.A. Pandit, D. Bostick, M.L. Berkowitz, Biophys. J. 84, 743 (2003)Google Scholar
  23. 23.
    H. Binder, O. Zschörnig, Chem. Phys. Lipids 115, 39 (2002)CrossRefGoogle Scholar
  24. 24.
    S. Carnie, S. McLaughlin, Biophys. J. 44, 325 (1983)ADSCrossRefGoogle Scholar
  25. 25.
    J.A. Cohen, M. Cohen, Biophys. J. 36, 623 (1981)ADSCrossRefGoogle Scholar
  26. 26.
    S.A. Tatulian, Eur. J. Biochem. 170, 413 (1987)CrossRefGoogle Scholar
  27. 27.
    K. Satoh, Biochim. Biophys. Acta 1239, 239 (1995)CrossRefGoogle Scholar
  28. 28.
    N. Kučerka, E. Dushanov, K.T. Kholmurodov, J. Katsaras, D. Uhríková, J. Phys.: Conf. Ser. 849, 12008 (2017)Google Scholar
  29. 29.
    M. Mullet, P. Fievet, J.P. Reggiani, J. Pagetti, J. Membr. Sci. 123, 255 (1997)CrossRefGoogle Scholar
  30. 30.
    F. Roosen-Runge, B.S. Heck, F. Zhang, O. Kohlbacker, F. Schreiber, J. Phys. Chem. B 117, 5777 (2013)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of BiałystokBiałystokPoland

Personalised recommendations