Advertisement

Capillarity-driven migration of small objects: A critical review

  • Jianlin LiuEmail author
  • Shanpeng Li
Topical Review

Abstract.

The phenomena on the capillarity-driven migration of small objects are full of interest for both scientific and engineering communities, and a critical review is thereby presented. The small objects mentioned here deal with the non-deformable objects, such as particles, rods, disks and metal sheets; and besides them, the soft objects are considered, such as droplets and bubbles. Two types of interfaces are analyzed, i.e., the solid-fluid interface and the fluid-fluid interface. Due to the easily deformable properties of the soft objects and distorted interfacial shapes induced by small objects, a more convenient way to obtain the driving force is through the potential energy of the system. The asymmetric factors causing the object migration include the asymmetric configuration of the interface, and the difference between the interfacial tensions. Finally, a simple outlook on the potential applications of small object migration is made. These behaviors may cast new light on the design of microfluidics and new devices, environment cleaning, oil and gas displacement and mineral industries.

Graphical abstract

Keywords

Flowing Matter: Interfacial phenomena 

References

  1. 1.
    J. Jurin, Philos. Trans. R. Soc. Lond. 30, 739 (1718)Google Scholar
  2. 2.
    S. Liu, S. Li, J. Liu, Eur. Phys. J. E 41, 46 (2018)ADSGoogle Scholar
  3. 3.
    P.G. De Gennes, Rev. Mod. Phys. 57, 827 (1985)ADSMathSciNetGoogle Scholar
  4. 4.
    D. Quéré, Physica A 313, 32 (2002)ADSGoogle Scholar
  5. 5.
    Q. Yuan, Y.P. Zhao, Phys. Rev. Lett. 104, 246101 (2010)ADSGoogle Scholar
  6. 6.
    Q. Yuan, Y.P. Zhao, Proc. R. Soc. A 468, 310 (2012)ADSGoogle Scholar
  7. 7.
    J. Yang, Q. Yuan, Y.P. Zhao, Int. J. Heat Mass Transfer 118, 201 (2018)Google Scholar
  8. 8.
    A. Otten, S. Herminghaus, Langmuir 20, 2405 (2004)Google Scholar
  9. 9.
    W. Barthlott, C. Neinhuis, Planta 202, 1 (1997)Google Scholar
  10. 10.
    D.L. Hu, B. Chan, J.W. Bush, Nature 424, 663 (2003)ADSGoogle Scholar
  11. 11.
    J. Liu, J. Sun, Y. Mei, Appl. Phys. Lett. 104, 231607 (2014)ADSGoogle Scholar
  12. 12.
    C.W. Wu, X.Q. Kong, D. Wu, Phys. Rev. E 76, 017301 (2007)ADSGoogle Scholar
  13. 13.
    N.J. Mlot, C.A. Tovey, D.L. Hu, Proc. Natl. Acad. Sci. U.S.A. 108, 7669 (2011)ADSGoogle Scholar
  14. 14.
    M. Prakash, D. Quéré, J.W. Bush, Science 320, 931 (2008)ADSGoogle Scholar
  15. 15.
    J. Li et al., J. Mech. Behav. Biomed. 77, 331 (2018)Google Scholar
  16. 16.
    K.K. Lau et al., Nano Lett. 3, 1701 (2003)ADSGoogle Scholar
  17. 17.
    L. Zhai et al., Nano Lett. 4, 1349 (2004)ADSMathSciNetGoogle Scholar
  18. 18.
    E. Hosono et al., J. Am. Chem. Soc. 127, 13458 (2005)Google Scholar
  19. 19.
    T. Onda et al., Langmuir 12, 2125 (1996)Google Scholar
  20. 20.
    J.L. Liu, X.Q. Feng, Acta Mech. Sin. 28, 928 (2012)ADSGoogle Scholar
  21. 21.
    B. Roman, J. Bico, J. Phys.: Condens. Matter 22, 493101 (2010)Google Scholar
  22. 22.
    X.Y. Ji et al., Appl. Phys. Lett. 100, 263104 (2012)ADSGoogle Scholar
  23. 23.
    N. Chakrapani et al., Proc. Natl. Acad. Sci. U.S.A. 101, 4009 (2004)ADSGoogle Scholar
  24. 24.
    J.L. Liu et al., J. Phys. D Appl. Phys. 40, 5564 (2007)ADSGoogle Scholar
  25. 25.
    É. Lorenceau, D. Quéré, J. Fluid Mech. 510, 29 (2004)ADSGoogle Scholar
  26. 26.
    C. Lv et al., Phys. Rev. Lett. 113, 026101 (2014)ADSGoogle Scholar
  27. 27.
    L. Jian-Lin et al., Chin. Phys. Lett. 24, 3210 (2007)ADSGoogle Scholar
  28. 28.
    P. Renvoisé et al., EPL 86, 64003 (2009)ADSGoogle Scholar
  29. 29.
    J. Ju et al., Nat. Commun. 3, 1247 (2012)ADSGoogle Scholar
  30. 30.
    C. Luo, Langmuir 31, 11809 (2015)Google Scholar
  31. 31.
    L. Guo, G.H. Tang, Int. J. Heat Mass Transfer 84, 198 (2015)Google Scholar
  32. 32.
    S. Zhang et al., Small 13, 1602992 (2017)Google Scholar
  33. 33.
    T. Xu et al., ACS Nano 10, 10681 (2016)Google Scholar
  34. 34.
    H. Zhou et al., Small 14, 1801335 (2018)Google Scholar
  35. 35.
    Y. Zheng et al., Nature 463, 640 (2010)ADSGoogle Scholar
  36. 36.
    H. Bai et al., Adv. Mater. 22, 5521 (2010)Google Scholar
  37. 37.
    Y. Chen et al., Sci. Rep.-UK 3, 2927 (2013)Google Scholar
  38. 38.
    Y. Chen et al., Sci. Rep.-UK 6, 19978 (2016)ADSGoogle Scholar
  39. 39.
    C. Luo, X. Heng, M. Xiang, Langmuir 30, 8373 (2014)Google Scholar
  40. 40.
    J. Zhang, Y. Han, Langmuir 23, 6136 (2007)Google Scholar
  41. 41.
    X. Heng, C. Luo, Langmuir 31, 2743 (2015)Google Scholar
  42. 42.
    M.A. Rubega, Ibis 139, 488 (1997)Google Scholar
  43. 43.
    H. Chen et al., Nature 532, 85 (2016)ADSGoogle Scholar
  44. 44.
    S. Li, J. Liu, J. Hou, Sci. Rep.-UK 6, 37888 (2016)ADSGoogle Scholar
  45. 45.
    C. Li et al., Angew. Chem. Int. Ed. 55, 14988 (2016)Google Scholar
  46. 46.
    X.P. Zheng et al., J. Colloid Interface Sci. 323, 133 (2008)ADSGoogle Scholar
  47. 47.
    Y.J. Yin et al., Appl. Math. Mech. 32, 533 (2011)Google Scholar
  48. 48.
    L. Courbin et al., Nat. Mater. 6, 661 (2007)ADSGoogle Scholar
  49. 49.
    E. Chen et al., J. Adhes. Sci. Technol. 30, 2265 (2016)Google Scholar
  50. 50.
    E. Chen, Q. Yuan, Y.P. Zhao, Soft Matter 14, 6198 (2018)ADSGoogle Scholar
  51. 51.
    Q. Yuan, Y.P. Zhao, J. Fluid Mech. 716, 171 (2013)ADSGoogle Scholar
  52. 52.
    Q. Yuan, Y.P. Zhao, Sci. Rep.-UK 3, 1944 (2013)ADSGoogle Scholar
  53. 53.
    Q. Yuan, X. Huang, Y.P. Zhao, Phys. Fluids 26, 092104 (2014)ADSGoogle Scholar
  54. 54.
    G. Fang et al., Langmuir 24, 11651 (2008)Google Scholar
  55. 55.
    Y.H. Lai, J.T. Yang, D.B. Shieh, Lab Chip 10, 499 (2010)Google Scholar
  56. 56.
    L. Xu, Z. Li, S. Yao, Appl. Phys. Lett. 101, 064101 (2012)ADSGoogle Scholar
  57. 57.
    J.S. Lee, J.Y. Moon, J.S. Lee, Appl. Therm. Eng. 72, 104 (2014)Google Scholar
  58. 58.
    Y. Lin et al., Adv. Mater. Interfaces 5, 1800962 (2018)Google Scholar
  59. 59.
    C. Liu et al., Adv. Mater. 26, 6086 (2014)ADSGoogle Scholar
  60. 60.
    R.W. Style et al., Proc. Natl. Acad. Sci. U.S.A. 110, 12541 (2013)ADSGoogle Scholar
  61. 61.
    M. Zhao et al., Proc. Natl. Acad. Sci. U.S.A. 115, 1748 (2018)ADSGoogle Scholar
  62. 62.
    L.E. Scriven, C.V. Sternling, Nature 187, 186 (1960)ADSGoogle Scholar
  63. 63.
    J. Thomson, Philos. Mag. 10, 330 (1855)Google Scholar
  64. 64.
    N.J. Cira, A. Benusiglio, M. Prakash, Nature 519, 446 (2015)ADSGoogle Scholar
  65. 65.
    H. Haidara, L. Vonna, J. Schultz, J. Chem. Phys. 107, 630 (1997)ADSGoogle Scholar
  66. 66.
    L.W. Schwartz et al., J. Eng. Math. 50, 157 (2004)Google Scholar
  67. 67.
    M. Grunze, Science 283, 41 (1999)ADSGoogle Scholar
  68. 68.
    J. Bico, D. Quere, Europhys. Lett. 51, 546 (2000)ADSGoogle Scholar
  69. 69.
    J. Bico, D. Quéré, J. Fluid Mech. 467, 101 (2002)ADSGoogle Scholar
  70. 70.
    Y.S. Ryazantsev et al., J. Colloid Interface Sci. 527, 180 (2018)ADSGoogle Scholar
  71. 71.
    J. Chen, Z. Dagan, C. Maldarelli, J. Fluid Mech. 233, 405 (1991)ADSGoogle Scholar
  72. 72.
    N.O. Young, J.S. Goldstein, M.J. Block, J. Fluid Mech. 6, 350 (1959)ADSGoogle Scholar
  73. 73.
    R. Sun, W.R. Hu, J. Colloid Interface Sci. 255, 375 (2002)ADSGoogle Scholar
  74. 74.
    M. Hasan, R. Balasubramaniam, J. Thermophys. Heat Transfer 3, 87 (1989)Google Scholar
  75. 75.
    A. Mazouchi, G.M. Homsy, Phys. Fluids 12, 542 (2000)ADSGoogle Scholar
  76. 76.
    S.K. Wilson, Phys. Fluids 5, 2064 (1993)ADSMathSciNetGoogle Scholar
  77. 77.
    A.L. Yarin, W. Liu, D.H. Reneker, J. Appl. Phys. 91, 4751 (2002)ADSGoogle Scholar
  78. 78.
    F. Brochard, Langmuir 5, 432 (1989)Google Scholar
  79. 79.
    S. Mettu, M.K. Chaudhury, Langmuir 24, 10833 (2008)Google Scholar
  80. 80.
    C. Gao et al., Adv. Funct. Mater. 28, 1803072 (2018)Google Scholar
  81. 81.
    A.R. Parker, C.R. Lawrence, Nature 414, 33 (2001)ADSGoogle Scholar
  82. 82.
    S. Daniel, M.K. Chaudhury, J.C. Chen, Science 291, 633 (2001)ADSGoogle Scholar
  83. 83.
    N. Moumen, R.S. Subramanian, J.B. McLaughlin, Langmuir 22, 2682 (2006)Google Scholar
  84. 84.
    M.K. Chaudhury, G.M. Whitesides, Science 256, 1539 (1992)ADSGoogle Scholar
  85. 85.
    P.T. Kühn, B.S. de Miranda, P. van Rijn, Adv. Mater. 27, 7401 (2015)Google Scholar
  86. 86.
    B. Chandesris, U. Soupremanien, N. Dunoyer, Colloid Surf. A 434, 126 (2013)Google Scholar
  87. 87.
    M. Zhang et al., Adv. Mater. 27, 5057 (2015)Google Scholar
  88. 88.
    M.M. Weislogel, AIChE J. 43, 645 (1997)Google Scholar
  89. 89.
    C.D. Bain, G.M. Whitesides, Langmuir 5, 1370 (1989)Google Scholar
  90. 90.
    S. Deng et al., Sci. Rep.-UK 7, 45687 (2017)ADSGoogle Scholar
  91. 91.
    S.W. Lee, D.Y. Kwok, P.E. Laibinis, Phys. Rev. E 65, 051602 (2002)ADSGoogle Scholar
  92. 92.
    S.W. Lee, P.E. Laibinis, J. Am. Chem. Soc. 122, 5395 (2000)Google Scholar
  93. 93.
    Y. Sumino et al., Phys. Rev. E 72, 041603 (2005)ADSGoogle Scholar
  94. 94.
    Y. Sumino et al., Phys. Rev. Lett. 94, 068301 (2005)ADSGoogle Scholar
  95. 95.
    F.D. Dos Santos, T. Ondarcuhu, Phys. Rev. Lett. 75, 2972 (1995)ADSGoogle Scholar
  96. 96.
    P.G. De Gennes, Physica A 249, 196 (1998)ADSGoogle Scholar
  97. 97.
    X. Yao et al., Soft Matter 8, 5988 (2012)ADSGoogle Scholar
  98. 98.
    K. Ichimura, S.K. Oh, M. Nakagawa, Science 288, 1624 (2000)ADSGoogle Scholar
  99. 99.
    M.M. Nicolson, Math. Proc. Cambridge 45, 288 (1949)ADSGoogle Scholar
  100. 100.
    F. Ghezzi, J.C. Earnshaw, J. Phys.: Condens. Matter 9, L517 (1997)ADSGoogle Scholar
  101. 101.
    P.A. Kralchevsky, K. Nagayama, Adv. Colloid Interface Sci. 85, 145 (2000)Google Scholar
  102. 102.
    R. McGorty et al., Mater. Today 13, 34 (2010)Google Scholar
  103. 103.
    O.D. Velev et al., Langmuir 9, 3702 (1993)Google Scholar
  104. 104.
    M. Oettel, A. Dominguez, S. Dietrich, Phys. Rev. E 71, 051401 (2005)ADSGoogle Scholar
  105. 105.
    B.J. Park, E.M. Furst, Soft Matter 7, 7676 (2011)ADSGoogle Scholar
  106. 106.
    M.A. Gharbi et al., Soft Matter 7, 1467 (2011)ADSGoogle Scholar
  107. 107.
    L.H. Ong, K.L. Yang, J. Phys. Chem. B 120, 825 (2016)Google Scholar
  108. 108.
    N. Bowden et al., Science 276, 233 (1997)Google Scholar
  109. 109.
    G.M. Whitesides, B. Grzybowski, Science 295, 2418 (2002)ADSGoogle Scholar
  110. 110.
    L. Botto et al., Soft Matter 8, 9957 (2012)ADSGoogle Scholar
  111. 111.
    N.B. Bowden et al., Accounts Chem. Res. 34, 231 (2001)Google Scholar
  112. 112.
    K.D. Danov et al., J. Colloid Interface Sci. 287, 121 (2005)ADSGoogle Scholar
  113. 113.
    K.D. Danov, P.A. Kralchevsky, Adv. Colloid Interface Sci. 154, 91 (2010)Google Scholar
  114. 114.
    D. Stamou, C. Duschl, D. Johannsmann, Phys. Rev. E 62, 5263 (2000)ADSGoogle Scholar
  115. 115.
    B.J. Park, T. Brugarolas, D. Lee, Soft Matter 7, 6413 (2011)ADSGoogle Scholar
  116. 116.
    S. Cappelli et al., Langmuir 33, 696 (2017)Google Scholar
  117. 117.
    L.C. Bradley et al., Curr. Opin. Colloid Interface Sci. 30, 25 (2017)Google Scholar
  118. 118.
    J. Lucassen, Colloid Surface 65, 131 (1992)Google Scholar
  119. 119.
    S. Dasgupta, Langmuir 30, 11873 (2014)Google Scholar
  120. 120.
    J.C. Loudet et al., Phys. Rev. Lett. 94, 018301 (2005)ADSGoogle Scholar
  121. 121.
    E.A. Van Nierop, M.A. Stijnman, S. Hilgenfeldt, Europhys. Lett. 72, 671 (2005)ADSGoogle Scholar
  122. 122.
    B. Madivala, J. Fransaer, J. Vermant, Langmuir 25, 2718 (2009)Google Scholar
  123. 123.
    J.C. Loudet, B. Pouligny, EPL 85, 28003 (2009)ADSGoogle Scholar
  124. 124.
    J.H. Lim et al., Langmuir 34, 384 (2017)Google Scholar
  125. 125.
    Z. Zhang et al., J. Am. Chem. Soc. 133, 392 (2010)Google Scholar
  126. 126.
    L. Botto et al., Soft Matter 8, 4971 (2012)ADSGoogle Scholar
  127. 127.
    E.P. Lewandowski et al., Langmuir 26, 15142 (2010)Google Scholar
  128. 128.
    J.Y. Wang et al., J. Am. Chem. Soc. 134, 5801 (2011)Google Scholar
  129. 129.
    I.B. Liu et al., Proc. Natl. Acad. Sci. U.S.A. 112, 6336 (2015)ADSGoogle Scholar
  130. 130.
    D.Y.C. Chan, J.D. Henry jr., L.R. White, J. Colloid Interface Sci. 79, 410 (1981)ADSGoogle Scholar
  131. 131.
    A. Tao, P. Sinsermsuksakul, P. Yang, Nat. Nanotechnol. 2, 435 (2007)ADSGoogle Scholar
  132. 132.
    G. Soligno, M. Dijkstra, R. van Roij, Phys. Rev. Lett. 116, 258001 (2016)ADSGoogle Scholar
  133. 133.
    T.G. Anjali, M.G. Basavaraj, Langmuir 33, 791 (2017)Google Scholar
  134. 134.
    H.K. Lee, Chem. Mater. 29, 6563 (2017)Google Scholar
  135. 135.
    N. Bowden et al., J. Am. Chem. Soc. 121, 5373 (1999)Google Scholar
  136. 136.
    N. Bowden, S.R. Oliver, G.M. Whitesides, J. Phys. Chem. B 104, 2714 (2000)Google Scholar
  137. 137.
    N. Bowden et al., Langmuir 17, 1757 (2001)Google Scholar
  138. 138.
    B.A. Grzybowski et al., J. Phys. Chem. B 105, 404 (2001)Google Scholar
  139. 139.
    J.A. Ferrar et al., Soft Matter 14, 3902 (2018)ADSGoogle Scholar
  140. 140.
    S.M. Kang et al., Soft Matter 12, 5847 (2016)ADSGoogle Scholar
  141. 141.
    H. Wu, N. Bowden, G.M. Whitesides, Appl. Phys. Lett. 75, 3222 (1999)ADSGoogle Scholar
  142. 142.
    A.B.D. Brown, C.G. Smith, A.R. Rennie, Phys. Rev. E 62, 951 (2000)ADSGoogle Scholar
  143. 143.
    Y. Yu et al., Langmuir 23, 10546 (2007)Google Scholar
  144. 144.
    E.P. Lewandowski et al., Soft Matter 5, 886 (2009)ADSGoogle Scholar
  145. 145.
    L. Yao et al., Soft Matter 9, 779 (2013)ADSGoogle Scholar
  146. 146.
    M. Frenkel et al., Langmuir 34, 6388 (2018)Google Scholar
  147. 147.
    I. Legchenkova et al., Surf. Innov. 6, 231 (2018)Google Scholar
  148. 148.
    D.L. Hu, J.W. Bush, Nature 437, 733 (2005)ADSGoogle Scholar
  149. 149.
    V.M. Ortega-Jiménez, S. Arriaga-Ramirez, R. Dudley, Biol. Lett. 12, 20160279 (2016)Google Scholar
  150. 150.
    S. Li et al., Colloid Surf. A 469, 252 (2015)ADSGoogle Scholar
  151. 151.
    L. Yao et al., J. Colloid Interface Sci. 449, 436 (2015)ADSGoogle Scholar
  152. 152.
    I.B. Liu et al., Phys. Rev. Fluids 2, 100501 (2017)ADSGoogle Scholar
  153. 153.
    N. Sharifi-Mood, I.B. Liu, K.J. Stebe, Soft Matter 11, 6768 (2015)ADSGoogle Scholar
  154. 154.
    M. Cavallaro et al., Proc. Natl. Acad. Sci. U.S.A. 108, 20923 (2011)ADSGoogle Scholar
  155. 155.
    I.B. Liu, N. Sharifi-Mood, K.J. Stebe, Philos. Trans. R. Soc. A 374, 20150133 (2016)ADSGoogle Scholar
  156. 156.
    J. Liu, S. Li, J. Hou, Soft Matter 12, 2221 (2016)ADSGoogle Scholar
  157. 157.
    S.J. Sowerby et al., J. Microsc. 244, 230 (2011)Google Scholar
  158. 158.
    E.P. Lewandowski et al., Langmuir 24, 9302 (2008)Google Scholar
  159. 159.
    G. Falkovich et al., Nature 435, 1045 (2005)ADSGoogle Scholar
  160. 160.
    A. Würger, Phys. Rev. E 74, 041402 (2006)ADSMathSciNetGoogle Scholar
  161. 161.
    X. Dou, S. Li, J. Liu, Appl. Phys. Lett. 111, 081602 (2017)ADSGoogle Scholar
  162. 162.
    P.A. Kralchevsky, N.D. Denkov, Curr. Opin. Colloid Inerface Sci. 6, 383 (2001)Google Scholar
  163. 163.
    C. Zeng et al., Soft Matter 8, 8582 (2012)ADSGoogle Scholar
  164. 164.
    P.Y. Kim et al., Soft Matter 14, 2131 (2018)ADSGoogle Scholar
  165. 165.
    J. Guzowski, M. Tasinkevych, S. Dietrich, Eur. Phys. J. E 33, 219 (2010)Google Scholar
  166. 166.
    J. Guzowski, M. Tasinkevych, S. Dietrich, Soft Matter 7, 4189 (2011)ADSGoogle Scholar
  167. 167.
    J. Guzowski, M. Tasinkevych, S. Dietrich, Phys. Rev. E 84, 031401 (2011)ADSGoogle Scholar
  168. 168.
    M. Lee, M. Xia, B.J. Park, Materials 9, 138 (2016)ADSGoogle Scholar
  169. 169.
    P.F. Noble et al., J. Am. Chem. Soc. 126, 8092 (2004)Google Scholar
  170. 170.
    N. Li, arXiv:1602.07179 (2016)Google Scholar
  171. 171.
    N. Li et al., Langmuir 33, 600 (2016)Google Scholar
  172. 172.
    C. Van Der Wel et al., Sci. Rep.-UK 6, 32825 (2016)ADSGoogle Scholar
  173. 173.
    A. Domínguez, M. Oettel, S. Dietrich, J. Chem. Phys. 128, 114904 (2008)ADSGoogle Scholar
  174. 174.
    J. Léandri, A. Würger, J. Colloid Interface Sci. 405, 249 (2013)ADSGoogle Scholar
  175. 175.
    C. Blanc et al., Phys. Rev. Lett. 111, 058302 (2013)ADSGoogle Scholar
  176. 176.
    P. Galatola, J.B. Fournier, Soft Matter 10, 2197 (2014)ADSGoogle Scholar
  177. 177.
    P. Galatola, Phys. Rev. E 93, 022604 (2016)ADSGoogle Scholar
  178. 178.
    D. Ershov et al., Proc. Natl. Acad. Sci. U.S.A. 110, 9220 (2013)ADSGoogle Scholar
  179. 179.
    L. Rayleigh, Proc. R. Soc. London 47, 364 (1889)Google Scholar
  180. 180.
    S. Nakata et al., Langmuir 13, 4454 (1997)Google Scholar
  181. 181.
    Y. Hayashima, M. Nagayama, S. Nakata, J. Phys. Chem. B 105, 5353 (2001)Google Scholar
  182. 182.
    M.I. Kohira et al., Langmuir 17, 7124 (2001)Google Scholar
  183. 183.
    S. Nakata, K. Matsuo, Langmuir 21, 982 (2005)Google Scholar
  184. 184.
    N.J. Suematsu et al., J. Phys. Chem. C 114, 9876 (2010)Google Scholar
  185. 185.
    N.J. Suematsu et al., Langmuir 30, 8101 (2014)Google Scholar
  186. 186.
    M. Frenkel et al., Appl. Phys. Lett. 110, 131604 (2017)ADSGoogle Scholar
  187. 187.
    K. Nagai et al., Phys. Rev. E 71, 065301 (2005)ADSGoogle Scholar
  188. 188.
    S. Oshima et al., Anal. Sci. 30, 441 (2014)Google Scholar
  189. 189.
    C. Luo, H. Li, X. Liu, J. Micromech. Microeng. 18, 067002 (2008)ADSGoogle Scholar
  190. 190.
    E. Bormashenko et al., J. Phys. Chem. C 119, 9910 (2015)Google Scholar
  191. 191.
    A. Musin et al., J. Colloid Interface Sci. 479, 182 (2016)ADSGoogle Scholar
  192. 192.
    R. Sharma, S.T. Chang, O.D. Velev, Langmuir 28, 10128 (2012)Google Scholar
  193. 193.
    M. Su, Appl. Phys. Lett. 90, 144102 (2007)ADSGoogle Scholar
  194. 194.
    M.M. Hanczyc, Philos. Trans. R. Soc. B 366, 2885 (2011)Google Scholar
  195. 195.
    A. Diguet et al., Angew. Chem. Int. Ed. 48, 9281 (2009)Google Scholar
  196. 196.
    S. Tanaka, Y. Sogabe, S. Nakata, Phys. Rev. E 91, 032406 (2015)ADSGoogle Scholar
  197. 197.
    S. Miura et al., Langmuir 30, 7977 (2014)Google Scholar
  198. 198.
    M.M. Hanczyc et al., J. Am. Chem. Soc. 129, 9386 (2007)Google Scholar
  199. 199.
    T. Toyota et al., J. Am. Chem. Soc. 131, 5012 (2009)Google Scholar
  200. 200.
    G. Zhao, M. Pumera, Lab Chip 14, 2818 (2014)Google Scholar
  201. 201.
    I. Lagzi et al., J. Am. Chem. Soc. 132, 1198 (2010)Google Scholar
  202. 202.
    A. Suzuki, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2012) p. 2180,  https://doi.org/10.1109/IROS.2012.6385738
  203. 203.
    C.C. Maass et al., Annu. Rev. Condens. Matter Phys. 7, 171 (2016)ADSGoogle Scholar
  204. 204.
    C. Jin, C. Krüger, C.C. Maass, Proc. Natl. Acad. Sci. U.S.A. 114, 5089 (2017)ADSGoogle Scholar
  205. 205.
    H. Hu, R.G. Larson, J. Phys. Chem. B 110, 7090 (2006)Google Scholar
  206. 206.
    M. Paven et al., Adv. Funct. Mater. 26, 3199 (2016)Google Scholar
  207. 207.
    N. Kavokine et al., Angew. Chem. Int. Ed. 55, 11183 (2016)Google Scholar
  208. 208.
    C. Song et al., Soft Matter 10, 2679 (2014)ADSGoogle Scholar
  209. 209.
    G.M. Whitesides, Nature 442, 368 (2006)ADSGoogle Scholar
  210. 210.
    E.K. Sackmann, A.L. Fulton, D.J. Beebe, Nature 507, 181 (2014)ADSGoogle Scholar
  211. 211.
    A. Terray, J. Oakey, D.W. Marr, Science 296, 1841 (2002)ADSGoogle Scholar
  212. 212.
    A.G. Yiotis et al., AICHE J. 50, 2721 (2004)Google Scholar
  213. 213.
    R. Farajzadeh et al., Adv. Colloid Interface Sci. 183, 1 (2012)Google Scholar
  214. 214.
    H. Zhang, A. Nikolov, D. Wasan, Energy Fuel 28, 3002 (2014)Google Scholar
  215. 215.
    L. Wen, Y. Tian, L. Jiang, Angew. Chem. Int. Ed. 54, 3387 (2015)Google Scholar
  216. 216.
    B.J. Shean, J.J. Cilliers, Int. J. Min. Process. 100, 57 (2011)Google Scholar
  217. 217.
    M.S. Reddy et al., J. Hazard. Mater. 147, 1051 (2007)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Engineering Mechanics, College of Pipeline and Civil EngineeringChina University of Petroleum (East China)QingdaoChina

Personalised recommendations