Thin wedge evaporation/condensation controlled by the vapor dynamics in the atmosphere

  • F. DoumencEmail author
  • V. Janeček
  • V. S. Nikolayev
Regular Article


Evaporation or condensation in the vicinity of the immobile (pinned) contact line in an atmosphere of some inert (noncondensable) gas is considered here in a partial wetting configuration. Such a problem is relevant to many situations, in particular to a drop or a liquid film drying in open air. The thermal effects are not important and the mass exchange rate is controlled by the vapor dynamics in the gas. By following previous works, we account for the weak coupling between the diffusion in the gas and flow in the liquid through the Kelvin effect. Such a problem is nonlocal because of the diffusion in the gas. For generality, we consider a geometry of a liquid wedge posed on a flat and homogeneous substrate surrounded by a gas phase with a diffusion boundary layer of uniform thickness \(\Lambda\). Similarly to the moving contact line problem, the phase change leads to the hydrodynamic contact line singularity. The asymptotic analysis of this problem is carried out for the liquid wedge of the length \( L \gg \Lambda\). Three asymptotic regions are identified: the microscopic one (in which the singularity is relaxed, in the present case with the Kelvin effect) and two intermediate regions. The Kelvin effect alone turns to be sufficient to relax the singularity. The scaling laws for the interface slope and mass evaporation/condensation flux in each region are discussed. It is found that the difference of the apparent contact angle (i.e., interface slope in the second intermediate region) and the equilibrium contact angle is inversely proportional to the square root of \(\Lambda\) and square root of the microscopic length, whatever is the singularity relaxation mechanism.

Graphical abstract


Flowing Matter: Interfacial phenomena 


  1. 1.
    M. Potash, P.C. Wayner, Int. J. Heat Mass Transfer 15, 1851 (1972)CrossRefGoogle Scholar
  2. 2.
    D.M. Anderson, S.H. Davis, Phys. Fluids 7, 248 (1995)CrossRefGoogle Scholar
  3. 3.
    V.S. Nikolayev, Phys. Fluids 22, 082105 (2010)CrossRefGoogle Scholar
  4. 4.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Phys. Rev. E 62, 756 (2000)CrossRefGoogle Scholar
  5. 5.
    Y.O. Popov, Phys. Rev. E 71, 036313 (2005)CrossRefGoogle Scholar
  6. 6.
    H. Hu, R. Larson, J. Phys. Chem. B 106, 1334 (2002)CrossRefGoogle Scholar
  7. 7.
    C. Poulard, G. Guéna, A.M. Cazabat, A. Boudaoud, M. Ben Amar, Langmuir 21, 8226 (2005)CrossRefGoogle Scholar
  8. 8.
    G. Berteloot, C.T. Pham, A. Daerr, F. Lequeux, L. Limat, EPL 83, 14003 (2008)CrossRefGoogle Scholar
  9. 9.
    C.T. Pham, G. Berteloot, F. Lequeux, L. Limat, EPL 92, 54005 (2010)CrossRefGoogle Scholar
  10. 10.
    J. Eggers, L.M. Pismen, Phys. Fluids 22, 112101 (2010)CrossRefGoogle Scholar
  11. 11.
    S.J.S. Morris, J. Fluid Mech. 739, 308 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    C. Huh, L.E. Scriven, J. Colloid Interface Sci. 35, 85 (1971)CrossRefGoogle Scholar
  13. 13.
    L.M. Hocking, Q. J. Mech. Appl. Math. 36, 55 (1983)CrossRefGoogle Scholar
  14. 14.
    V. Janeček, B. Andreotti, D. Pražák, T. Bárta, V.S. Nikolayev, Phys. Rev. E 88, 060404 (2013)CrossRefGoogle Scholar
  15. 15.
    A. Rednikov, P. Colinet, Phys. Rev. E 87, 010401 (2013)CrossRefGoogle Scholar
  16. 16.
    J.H. Snoeijer, B. Andreotti, Annu. Rev. Fluid Mech. 45, 269 (2013)CrossRefGoogle Scholar
  17. 17.
    S. Moosman, G.M. Homsy, J. Colloid Interface Sci. 73, 212 (1980)CrossRefGoogle Scholar
  18. 18.
    P. Stephan, J. Hammer, Heat Mass Transfer 30, 119 (1994)Google Scholar
  19. 19.
    A.Y. Rednikov, P. Colinet, Langmuir 27, 1758 (2011)CrossRefGoogle Scholar
  20. 20.
    V. Janeček, V.S. Nikolayev, EPL 100, 14003 (2012)CrossRefGoogle Scholar
  21. 21.
    R. Raj, C. Kunkelmann, P. Stephan, J. Plawsky, J. Kim, Int. J. Heat Mass Transfer 55, 2664 (2012)CrossRefGoogle Scholar
  22. 22.
    L. Fourgeaud, E. Ercolani, J. Duplat, P. Gully, V.S. Nikolayev, Phys. Rev. Fluids 1, 041901 (2016)CrossRefGoogle Scholar
  23. 23.
    V. Janeček, V.S. Nikolayev, Phys. Rev. E 87, 012404 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Tsoumpas, S. Dehaeck, M. Galvagno, A. Rednikov, H. Ottevaere, U. Thiele, P. Colinet, Langmuir 30, 11847 (2014)CrossRefGoogle Scholar
  25. 25.
    F. Doumenc, B. Guerrier, Eur. Phys. J. ST 197, 281 (2011)CrossRefGoogle Scholar
  26. 26.
    V.V. Janeček, F. Doumenc, B. Guerrier, V.S. Nikolayev, J. Colloid Interface Sci. 460, 329 (2015)CrossRefGoogle Scholar
  27. 27.
    C. Loussert, F. Doumenc, J.B. Salmon, V.S. Nikolayev, B. Guerrier, Langmuir 33, 14078 (2017)CrossRefGoogle Scholar
  28. 28.
    G. Barnes, Adv. Colloid Interface Sci. 25, 89 (1986)CrossRefGoogle Scholar
  29. 29.
    V.P. Carey, Liquid-Vapor Phase Change Phenomena (Hemisphere, Washington D.C., 1992)Google Scholar
  30. 30.
    M.A. Saxton, D. Vella, J.P. Whiteley, J.M. Oliver, J. Eng. Math. 106, 47 (2017)CrossRefGoogle Scholar
  31. 31.
    J.H. Snoeijer, J. Eggers, Phys. Rev. E 82, 056314 (2010)CrossRefGoogle Scholar
  32. 32.
    J. Eggers, Phys. Fluids 17, 082106 (2005)MathSciNetCrossRefGoogle Scholar
  33. 33.
    A. Korn, T.M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (Mc Graw Hill, New York, 2000)Google Scholar
  34. 34.
    G. Grinberg, Selected Problems of the Mathematical Theory of Electric and Magnetic Effects (Izd. Akad. Nauk SSSR, Moscow-Leningrad, 1948) in RussianGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire FASTUniv. Paris-Sud, CNRS, Université Paris-SaclayOrsayFrance
  2. 2.Sorbonne Université, UFR 919Paris Cedex 05France
  3. 3.Service de Physique de l’Etat Condensé, CEA, CNRSUniversité Paris-Saclay, CEA SaclayGif-sur-Yvette CedexFrance

Personalised recommendations