Advertisement

Modelling of non-premixed turbulent combustion with Conditional Moment Closure (CMC)

  • I. StankovićEmail author
Regular Article
  • 20 Downloads
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications

Abstract.

Conditional Moment Closure (CMC), an advanced turbulent reacting flow method, has been applied to the challenging cases with a varying degree of turbulence-chemistry interactions. The CMC approach may be used either in the RAMS or LES context, this is reviewed in the first part of this paper, while the second part is dedicated to applications on Sandia piloted jet flames D and F and lifted hydrogen jet flame. In case of the Sandia piloted jet flame D, the RANS-CMC simulation results are in agreement with the experimental data. On the other hand, when one comes to the results for the Sandia flame F, extinction is not captured. These discrepancies are attributed to the use of RANS in combination with the boundary conditions set in CMC. However, in case of turbulent lifted jet flame in vitiated co-flow, the LES-CMC model is able to capture the axial and radial profiles of mixture fraction, temperature and major species. The lift-off height is found to be very sensitive to the co-flow temperature as well as the co-flow velocity. The LES-CMC results highlight the potential of the technique to simulate the problems which involve complex turbulence-chemistry interactions.

Graphical abstract

Keywords

Topical issue: Flowing Matter, Problems and Applications 

References

  1. 1.
    T. Echekki, E. Mastorakos (Editors), Turbulent Combustion Modeling: Advances, New Trends and Perspectives, Vol. 95: Fluid mechanics and its applications (Springer, 2011)Google Scholar
  2. 2.
    D. Jenny, P. Roekaerts, N. Beishuizen, Prog. Energy Combust. Sci. 38, 846 (2012)CrossRefGoogle Scholar
  3. 3.
    I. Blomgren, F. Rosen, A. Yanagihara, H. Stanković, I. Sakata, Combust. Flame 161, 541 (2014)CrossRefGoogle Scholar
  4. 4.
    R. Cabra, T. Myhrvold, J.Y. Chen, R.W. Dibble, A.N. Karpetis, R.S. Barlow, Proc. Combust. Inst. 29, 1881 (2002)CrossRefGoogle Scholar
  5. 5.
    T. Poinsot, D. Veynante, Theoretical and Numerical Combustion (Edwards, 2001)Google Scholar
  6. 6.
    S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000)Google Scholar
  7. 7.
    H. Pitsch, Annu. Rev. Fluid Mech. 38, 453 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    D. Veynante, L. Vervisch, Prog. Energy Combust. Sci. 28, 193 (2002)CrossRefGoogle Scholar
  9. 9.
    R.W. Bilger, Combust. Sci. Technol. 13, 155 (1976)CrossRefGoogle Scholar
  10. 10.
    H. Pitsch, N. Peters, Combust. Flame 114, 26 (1998)CrossRefGoogle Scholar
  11. 11.
    N. Branley, W.P. Jones, Combust. Flame 127, 1914 (2001)CrossRefGoogle Scholar
  12. 12.
    F. Di Mare, W.P. Jones, K.R. Menzies, Combust. Flame 137, 278 (2004)CrossRefGoogle Scholar
  13. 13.
    H. Pitsch, M. Chen, N. Peters, Proc. Combust. Inst. 27, 1057 (1998)CrossRefGoogle Scholar
  14. 14.
    H. Pitsch, H. Steiner, Phys. Fluids 12, 2541 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    M. Ihme, H. Pitsch, Combust. Flame 155, 70 (2008)CrossRefGoogle Scholar
  16. 16.
    M. Ihme, C.S. See, Combust. Flame 157, 1850 (2010)CrossRefGoogle Scholar
  17. 17.
    C.D. Pierce, P. Moin, J. Fluid. Mech. 504, 73 (2004)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    A.Y. Klimenko, R.W. Bilger, Prog. Energy Combust. Sci. 25, 595 (1999)CrossRefGoogle Scholar
  19. 19.
    A. Tyliszczak, D.E. Cavaliere, E. Mastorakos, Flow Turbul. Combust. 92, 237 (2014)CrossRefGoogle Scholar
  20. 20.
    I. Stanković, E. Mastorakos, B. Merci, Flow Turbul. Combust. 90, 583 (2013)CrossRefGoogle Scholar
  21. 21.
    A. Garmory, E. Mastorakos, Proc. Combust. Inst. 35, 1207 (2015)CrossRefGoogle Scholar
  22. 22.
    W.K. Bushe, H. Steiner, Phys. Fluids 15, 1564 (2003)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    R.W. Grout, W.K. Bushe, C. Blair, Combust. Theory Model. 11, 1009 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    J.W. Labahn, C.B. Devaud, Combust. Theory Model. 17, 960 (2013)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    M. Wang, J. Huang, W.K. Bushe, Proc. Combust. Inst. 31, 1701 (2007)CrossRefGoogle Scholar
  26. 26.
    J. Huang, W.K. Bushe, Combust. Theory Model. 11, 977 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    C.W. Lee, E. Mastorakos, Combust. Theory Model. 12, 1153 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    R.S. Cant, E. Mastorakos, An Introduction to Turbulent Reacting Flows (Imperial College Press, 2008)Google Scholar
  29. 29.
    S.B. Pope, Prog. Energy Combust. Sci. 11, 119 (1985)ADSCrossRefGoogle Scholar
  30. 30.
    A.R. Masri, S.B. Pope, Combust. Flame 81, 13 (1990)CrossRefGoogle Scholar
  31. 31.
    R. Cabra, J.Y. Chen, R.W. Dibble, A.N. Karpetis, R.S. Barlow, Combust. Flame 143, 491 (2005)CrossRefGoogle Scholar
  32. 32.
    M.R.H. Sheikhi, T.R. Grozda, P. Givi, S.B. Pope, Phys. Fluids 15, 2321 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    W.P. Jones, S. Navarro-Martinez, O. Rohl, Proc. Combust. Inst. 31, 1765 (2007)CrossRefGoogle Scholar
  34. 34.
    M.R. Roomina, R.W. Bilger, Combust. Flame 125, 1176 (2001)CrossRefGoogle Scholar
  35. 35.
    S. Sreedhara, Y. Lee, Kang Y. Huh, D.H. Ahn, Combust. Flame 152, 282 (2007)CrossRefGoogle Scholar
  36. 36.
    E. Mastorakos, R.W. Bilger, Phys. Fluids 10, 1246 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    S. Navarro-Martinez, A. Kronenburg, Proc. Combust. Inst. 31, 1721 (2007)CrossRefGoogle Scholar
  38. 38.
    A. Kronenburg, E. Mastorakos, The conditional moment closure model, in Turbulent Combustion Modelling, Advances, New Trends and Perspectives, edited by T. Echekki, E. Mastarakos (Springer, 2011)Google Scholar
  39. 39.
    G. De Paola, E. Mastorakos, Y.M. Wright, K. Boulouchos, Combust. Sci. Technol. 180, 883 (2008)CrossRefGoogle Scholar
  40. 40.
    I.S. Kim, E. Mastorakos, Proc. Combust. Inst. 30, 911 (2005)CrossRefGoogle Scholar
  41. 41.
    S.H. Kim, H. Pitsch, Phys. Fluids 18, 07510 (2006)Google Scholar
  42. 42.
    Y.M. Wright, G. De Paola, K. Boulouchos, E. Mastorakos, Combust. Flame 143, 402 (2005)CrossRefGoogle Scholar
  43. 43.
    S.H. Kim, H. Pitsch, Phys. Fluids 18, 105103 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    S. Navarro-Martinez, A. Kronenburg, F. Di Mare, Flow Turbul. Combust. 75, 245 (2005)CrossRefGoogle Scholar
  45. 45.
    A. Garmory, E. Mastorakos, Proc. Combust. Inst. 33, 1673 (2011)CrossRefGoogle Scholar
  46. 46.
    A. Triantafyllidis, E. Mastorakos, R.L.G.M. Eggels, Combust. Flame 156, 2328 (2009)CrossRefGoogle Scholar
  47. 47.
    S. Navarro-Martinez, A. Kronenburg, Proc. Combust. Inst. 32, 1509 (2009)CrossRefGoogle Scholar
  48. 48.
    S. Sreedhara, K.N. Lakshmisha, Proc. Combust. Inst. 28, 25 (2000)CrossRefGoogle Scholar
  49. 49.
    R.M. Woolley Yunardi, M. Fairweather, Combust. Flame 152, 360 (2008)CrossRefGoogle Scholar
  50. 50.
    E. Mastorakos, R.W. Bilger, Phys. Fluids 10, 1246 (1998)ADSCrossRefGoogle Scholar
  51. 51.
    A.Y. Klimenko, R.W. Bilger, Prog. Energy Combust. Sci. 25, 595 (1999)CrossRefGoogle Scholar
  52. 52.
    C.B. Devaud, K.N.C. Bray, Combust. Flame 132, 102 (2003)CrossRefGoogle Scholar
  53. 53.
    E.E. O'Brien, T.L. Jiang, Phys. Fluids 3, 3121 (1991)ADSCrossRefGoogle Scholar
  54. 54.
    N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000)Google Scholar
  55. 55.
    C. Pera, J. Reveillon, L. Vervisch, P. Domingo, Combust. Flame 146, 635 (2006)CrossRefGoogle Scholar
  56. 56.
    S.S. Girimaji, Y. Zhou, Phys. Fluids 8, 1224 (1996)ADSCrossRefGoogle Scholar
  57. 57.
    C.D. Pierce, P. Moin, Phys. Fluids 10, 3041 (1998)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    A. Triantafyllidis, E. Mastorakos, Flow Turbul. Combust. 84, 481 (2010)CrossRefGoogle Scholar
  59. 59.
    R.S. Barlow, J.H. Frank, Proc. Combust. Inst. 27, 1087 (1998)CrossRefGoogle Scholar
  60. 60.
    R.L. Gordon, A.R. Masri, S.B. Pope, G.M. Goldin, Combust. Theory Model. 11, 351 (2007)ADSCrossRefGoogle Scholar
  61. 61.
    I. Stanković, A. Triantafyllidis, E. Mastorakos, C. Lacor, B. Merci, Flow Turbul. Combust. 86, 689 (2011)CrossRefGoogle Scholar
  62. 62.
    I. Stanković, Numerical simulations of hydrogen auto-ignition in Tubulent flows, PhD Thesis, Ghent University (2011)Google Scholar
  63. 63.
    J.W. Labahn, I. Stanković, B. Merci, C.B. Devaud, Combust. Flame 181, 172 (2017)CrossRefGoogle Scholar
  64. 64.
    A. Triantafyllidis, Large Eddy Simulations of spark ignition process with the CMC method, PhD Thesis, University of Cambridge, Department of Engineering (2009)Google Scholar
  65. 65.
    I.S. Kim, E. Mastorakos, Flow Turbul. Combust. 76, 133 (2006)CrossRefGoogle Scholar
  66. 66.
    C.N. Markides, G. De Paola, E. Mastorakos, Exp. Therm. Fluid Sci. 31, 393 (2007)CrossRefGoogle Scholar
  67. 67.
    B. Van Leer, J. Comput. Phys. 14, 361 (1974)ADSCrossRefGoogle Scholar
  68. 68.
    J.H. Ferziger, M. Perić, Computational Methods for Fluid Dynamics (Springer, 2002)Google Scholar
  69. 69.
    H. Pitsch, H. Steiner, Phys. Fluids 12, 2541 (2000)ADSCrossRefGoogle Scholar
  70. 70.
    P.J. Coelho, N. Peters, Combust. Flame 124, 444 (2001)CrossRefGoogle Scholar
  71. 71.
    M. Ihme, H. Pitsch, Combust. Flame 155, 90 (2008)CrossRefGoogle Scholar
  72. 72.
    K. Xiao, D. Schmidt, U. Maas, Proc. Combust. Inst. 28, 157 (2000)CrossRefGoogle Scholar
  73. 73.
    R. Mustata, L. Valiño, C. Jiménez, W.P. Jones, S. Bondi, Combust. Flame 145, 88 (2006)CrossRefGoogle Scholar
  74. 74.
    R.P. Lindstedt, S.A. Louloudi, E.M. Váos, Proc. Combust. Inst. 28, 149 (2000)CrossRefGoogle Scholar
  75. 75.
    J. Xu, S.B. Pope, Combust. Flame 123, 281 (2000)CrossRefGoogle Scholar
  76. 76.
    W.P. Jones, V.N. Prasad, Combust. Flame 157, 1621 (2010)CrossRefGoogle Scholar
  77. 77.
    Y. Ge, M.J. Cleary, A.Y. Klimenko, Proc. Combust. Inst. 33, 1401 (2011)CrossRefGoogle Scholar
  78. 78.
    A. Kronenburg, M. Kostka, Combust. Flame 143, 342 (2005)CrossRefGoogle Scholar
  79. 79.
    S. Navarro-Martinez, A. Kronenburg, F. Di Mare, Flow Turbul. Combust. 75, 245 (2005)CrossRefGoogle Scholar
  80. 80.
    A. Garmory, E. Mastorakos, Int. J. Heat Fluid Flow 39, 53 (2013)CrossRefGoogle Scholar
  81. 81.
    S.H. Kim, K.Y. Huh, Combust. Flame 138, 336 (2004)CrossRefGoogle Scholar
  82. 82.
    R.R. Cao, S.B. Pope, A.R. Masri, Combust. Flame 142, 438 (2005)CrossRefGoogle Scholar
  83. 83.
    I. Stanković, B. Merci, Therm. Sci. 17, 763 (2013)CrossRefGoogle Scholar
  84. 84.
    I. Stanković, B. Merci, Combust. Theory Model. 15, 409 (2011)ADSCrossRefGoogle Scholar
  85. 85.
    E. Mastorakos, Prog. Energy Combust. Sci. 35, 57 (2009)CrossRefGoogle Scholar
  86. 86.
    J. Li, Z. Zhao, A. Kazakov, F.L. Dryer, Int. J. Chem. Kinet. 36, 566 (2004)CrossRefGoogle Scholar
  87. 87.
    W.P. Jones, S. Navarro-Martinez, Combust. Flame 150, 170 (2007)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ghent University, Department of Flow, Heat and Combustion MechanicsGhentBelgium

Personalised recommendations