Dynamics and energy dissipation of a rigid dipole driven by the RF-field in a viscous fluid: Deterministic approach

  • T. V. LyutyyEmail author
Regular Article


The deterministic rotation of a ferromagnetic nanoparticle in a fluid is considered. The heating arising from viscous friction of a nanoparticle driven by circularly and linearly polarized alternating magnetic fields is investigated. Since the power loss of such fields depends on the character of the induced motion of a nanoparticle, all types of particle trajectories are described in detail. The dependences of the power loss on the alternating field parameters are determined. The optimal conditions for obtaining the maximum heating efficiency are discussed. The effect of heating enhancement by a static field is analyzed. The results obtained can be actual for the description of heating in the magnetic fluid hyperthermia cancer treatment, when the size of the particles used is a few tens of nanometers.

Graphical abstract


Soft Matter: Colloids and Nanoparticles 


  1. 1.
    R.E. Rosensweig, Ferrohydrodynamics (Cambridge University Press, 1985)Google Scholar
  2. 2.
    M.I. Shliomis, Sov. Phys. Usp. 17, 153 (1974)CrossRefGoogle Scholar
  3. 3.
    Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D: Appl. Phys. 36, R167 (2003)CrossRefGoogle Scholar
  4. 4.
    Omid Veiseh, Jonathan W. Gunn, Miqin Zhang, Adv. Drug Deliv. Rev. 62, 284 (2010)CrossRefGoogle Scholar
  5. 5.
    Andreas Jordan, Regina Scholz, Peter Wust, Horst Fhling, Roland Felix, J. Magn. & Magn. Mater. 201, 413 (1999)CrossRefGoogle Scholar
  6. 6.
    Silvio Dutz, Rudolf Hergt, Nanotechnology 25, 452001 (2014)CrossRefGoogle Scholar
  7. 7.
    Bo Tian, Zhen Qiu, Jing Ma, Teresa Zardn Gmez de la Torre, Christer Johansson, Peter Svedlindh, Mattias Strmberg, Biosens. Bioelectron. 86, 420 (2016)CrossRefGoogle Scholar
  8. 8.
    Bo Tian, Teresa Zardan Gomez de la Torre, Marco Donolato, Mikkel Fougt Hansen, Peter Svedlindh, Mattias Stromberg, Anal. Methods 8, 5009 (2016)CrossRefGoogle Scholar
  9. 9.
    Haiwen Xi, Kai-Zhong Gao, Yiming Shi, Song Xue, J. Phys. D: Appl. Phys. 39, 4746 (2006)CrossRefGoogle Scholar
  10. 10.
    N.A. Usov, B.Ya. Liubimov, J. Appl. Phys. 112, 023901 (2012)CrossRefGoogle Scholar
  11. 11.
    Hedyeh Keshtgar, Simon Streib, Akashdeep Kamra, Yaroslav M. Blanter, Gerrit E.W. Bauer, Phys. Rev. B 95, 134447 (2017)CrossRefGoogle Scholar
  12. 12.
    T.V. Lyutyy, O.M. Hryshko, A.A. Kovner, E.S. Denisova, J. Nano-Electron. Phys. 8, 04086 (2016)CrossRefGoogle Scholar
  13. 13.
    T.V. Lyutyy, O.M. Hryshko, A.A. Kovner, J. Magn. & Magn. Mater. 446, 87 (2018) (Supplement C)CrossRefGoogle Scholar
  14. 14.
    Klaus D. Usadel, Phys. Rev. B 95, 104430 (2017)CrossRefGoogle Scholar
  15. 15.
    Jürgen Weizenecker, Phys. Med. Biol. 63, 035004 (2018)CrossRefGoogle Scholar
  16. 16.
    Claudio Scherer, Hans-Georg Matuttis, Phys. Rev. E 63, 011504 (2000)CrossRefGoogle Scholar
  17. 17.
    Yu.L. Raikher, V.I. Stepanov, J. Exp. Theor. Phys. 112, 173 (2011)CrossRefGoogle Scholar
  18. 18.
    Yu.L. Raikher, V.I. Stepanov, Phys. Rev. E 83, 021401 (2011)CrossRefGoogle Scholar
  19. 19.
    B.U. Felderhof, R.B. Jones, J. Phys.: Condens. Matter 15, 4011 (2003)Google Scholar
  20. 20.
    D. Soto-Aquino, C. Rinaldi, J. Magn. & Magn. Mater. 393, 46 (2015)CrossRefGoogle Scholar
  21. 21.
    T.V. Lyutyy, S.I. Denisov, V.V. Reva, Yu.S. Bystrik, Phys. Rev. E 92, 042312 (2015)CrossRefGoogle Scholar
  22. 22.
    T.V. Lyutyy, V.V. Reva, Phys. Rev. E 97, 052611 (2018)CrossRefGoogle Scholar
  23. 23.
    J.J. Newman, R.B. Yarbrough, J. Appl. Phys. 39, 5566 (1968)CrossRefGoogle Scholar
  24. 24.
    W. Andrä, H. Nowak, Magnetism in Medicine: A Handbook (Wiley-VCH Verlag GmbH & Co. KGaA, 2007)
  25. 25.
    T.V. Lyutyy, S.I. Denisov, A.Yu. Peletskyi, C. Binns, Phys. Rev. B 91, 054425 (2015)CrossRefGoogle Scholar
  26. 26.
    M. Ibrahim Dar, S.A. Shivashankar, RSC Adv. 4, 4105 (2014)CrossRefGoogle Scholar
  27. 27.
    William Fuller Brown, Phys. Rev. 130, 1677 (1963)CrossRefGoogle Scholar
  28. 28.
    S.I. Denisov, A.N. Yunda, Physica B: Condens. Matter 245, 282 (1998)CrossRefGoogle Scholar
  29. 29.
    S.I. Denisov, T.V. Lyutyy, P. Hänggi, Phys. Rev. Lett. 97, 227202 (2006)CrossRefGoogle Scholar
  30. 30.
    Herbert Goldstein, Classical Mechanics (Pearson Education, 2002)
  31. 31.
    Moshe Gitterman, The Chaotic Pendulum, 5 Toh Tuck Link (World Scientific, Singapore, 2010)
  32. 32.
    Y.L. Raikher, M.I. Shliomis, Adv. Chem. Phys. 87, 595 (1994)Google Scholar
  33. 33.
    Giorgio Bertotti, Claudio Serpico, Isaak D. Mayergoyz, Phys. Rev. Lett. 86, 724 (2001)CrossRefGoogle Scholar
  34. 34.
    T.V. Lyutyy, A.Yu. Polyakov, A.V. Rot-Serov, C. Binns, J. Phys.: Condens. Matter 21, 396002 (2009)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sumy State UniversitySumyUkraine

Personalised recommendations