Topology and ground-state degeneracy of tetrahedral smectic vesicles

  • Francesco SerafinEmail author
  • Mark J. Bowick
  • Sidney R. Nagel
Regular Article


Chemical design of block copolymers makes it possible to create polymer vesicles with tunable microscopic structure. Here we focus on a model of a vesicle made of smectic liquid-crystalline block copolymers at zero temperature. The vesicle assumes a faceted tetrahedral shape and the smectic layers arrange in a stack of parallel straight lines with topological defects localized at the vertices. We counted the number of allowed states at \(T = 0\). For any fixed shape, we found a two-dimensional countable degeneracy in the smectic pattern depending on the tilt angle between the smectic layers and the edge of the tetrahedral shell. For most values of the tilt angle, the smectic layers contain spiral topological defects. The system can spontaneously break chiral symmetry when the layers organize into spiral patterns, composed of a bound pair of +1/2 disclinations. Finally, we suggest possible applications of tetrahedral smectic vesicles in the context of functionalizing defects and the possible consequences of the spiral structures for the rigidity of the vesicle.

Graphical abstract


Soft Matter: Liquid crystals 


  1. 1.
    J.A. Davies (Editor), Mechanisms of Morphogenesis, second edition (Academic Press, Boston, 2013)Google Scholar
  2. 2.
    J. Zinn-Justin, F. David, P. Ginsparg, Fluctuating Geometries in Statistical Mechanics and Field Theory, Les Houches, Session LXII (Elsevier, 1996)Google Scholar
  3. 3.
    B. Xu, R. Pinol, M. Nono-Djamen, S. Pensec, P. Keller, P.-A. Albouy, D. Levy, M.-H. Li, Faraday Discuss. 143, 235 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    L. Zhou, D. Zhang, S. Hocine, A. Pilone, S. Trepout, S. Marco, C. Thomas, J. Guo, M.-H. Li, Polym. Chem. 8, 4776 (2017)CrossRefGoogle Scholar
  5. 5.
    L. Jia, A. Cao, D. Levy, B. Xu, P.-A. Albouy, X. Xing, M.J. Bowick, M.-H. Li, Soft Matter 5, 3446 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    F. Zhou, Z. Zhang, G. Jiang, J. Lu, X. Chen, Y. Li, N. Zhou, X. Zhu, Polym. Chem. 7, 2785 (2016)CrossRefGoogle Scholar
  7. 7.
    P. Gilles de Gennes de, J. Prost, The Physics of Liquid Crystal, International Series of Monographs on Physics No. 83, second edition (Clarendon Press, Oxford, 1993)Google Scholar
  8. 8.
    U. Seifert, Adv. Phys. 46, 13 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    M. Winterhalter, D. Lasic, Chem. Phys. Lipids 64, 35 (1993)CrossRefGoogle Scholar
  10. 10.
    A.M. Polyakov, Gauge Fields and Strings, Contemporary Concepts in Physics (Taylor & Francis, 1987)Google Scholar
  11. 11.
    M.P. DoCarmo, Differential Geometry of Curves and Surfaces (Prentice-Hall, Englewood Cliffs, NJ, 1976)Google Scholar
  12. 12.
    A.P. Balachandran, F. Lizzi, V.G.J. Rodgers, Phys. Rev. Lett. 52, 1818 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    H. Baues, Obstruction Theory: On Homotopy Classification of Maps, Lect. Notes Math., Vol. 628 (Springer Berlin, Heidelberg, 2006)Google Scholar
  14. 14.
    D. Husemoller, D. Husemöller, Fibre Bundles, Graduate Texts in Mathematics (Springer, 1994)Google Scholar
  15. 15.
    M. Bowick, L. Giomi, Adv. Phys. 58, 449 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    X. Xing, H. Shin, M.J. Bowick, Z. Yao, L. Jia, M.-H. Li, Proc. Natl. Acad. Sci. 109, 5202 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    X. Xing, J. Stat. Phys. 134, 487 (2009)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    D.R. Nelson, Nano Lett. 2, 1125 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    G.A. DeVries, M. Brunnbauer, Y. Hu, A.M. Jackson, B. Long, B.T. Neltner, O. Uzun, B.H. Wunsch, F. Stellacci, Science 315, 358 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    K. Akashi, K. Kinoshita jr., H. Miyata, H. Itoh, Observations of A Variety of Giant Vesicles Under an Optical Microscope, in Giant Vesicles: Perspectives in Supramolecular Chemistry edited by P.L. Luisi, P. Walde, Vol. 6 (John Wiley & Sons, Ltd, 2000) pp. 45--48Google Scholar
  21. 21.
    F.C. Marques, A. Neves, Ann. Math. 179, 683 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    J.H. White, Proc. Am. Math. Soc. 38, 162 (1973)CrossRefGoogle Scholar
  23. 23.
    T.C. Lubensky, J. Prost, J. Phys. II 2, 371 (1992)Google Scholar
  24. 24.
    A. Fernández-Nieves, V. Vitelli, A.S. Utada, D.R. Link, M. Márquez, D.R. Nelson, D A. Weitz, Phys. Rev. Lett. 99, 157801 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    T. Lopez-Leon, V. Koning, K.B.S. Devaiah, V. Vitelli, A. Fernandez-Nieves, Nat. Phys. 7, 391 (2011)CrossRefGoogle Scholar
  26. 26.
    M. Kléman, Soft Matter Physics: An Introduction (Springer, New York, 2003)Google Scholar
  27. 27.
    V. Poénaru, Commun. Math. Phys. 80, 127 (1981)ADSCrossRefGoogle Scholar
  28. 28.
    H. Lawson, The Quantitative Theory of Foliations (American Mathematical Society, 2007)Google Scholar
  29. 29.
    G.P. Alexander, B.G.-g. Chen, E.A. Matsumoto, R.D. Kamien, Phys. Rev. Lett. 104, 257802 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    G.P. Alexander, R.D. Kamien, R.A. Mosna, Phys. Rev. E 85, 050701 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    L. Michel, Rev. Mod. Phys. 52, 617 (1980)ADSCrossRefGoogle Scholar
  32. 32.
    N.D. Mermin, Rev. Mod. Phys. 51, 591 (1979)ADSCrossRefGoogle Scholar
  33. 33.
    M. Kléman, L. Michel, G. Toulouse, J. Phys. Lett. (Paris) 38, 195 (1977)CrossRefGoogle Scholar
  34. 34.
    H. Shin, M.J. Bowick, X. Xing, Phys. Rev. Lett. 101, 037802 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    R. Mosseri, J. Phys. A: Math. Gen. 25, L25 (1992)ADSCrossRefGoogle Scholar
  36. 36.
    R. Penrose, Ann. Human Genet. 42, 435 (1979)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Francesco Serafin
    • 1
    • 2
    Email author
  • Mark J. Bowick
    • 2
  • Sidney R. Nagel
    • 3
  1. 1.Physics Department and Syracuse Soft and Living Matter ProgramSyracuse UniversitySyracuseUSA
  2. 2.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraUSA
  3. 3.The James Franck and Enrico Fermi Institutes and The Department of PhysicsThe University of ChicagoChicagoUSA

Personalised recommendations