Advertisement

Effective squirmer models for self-phoretic chemically active spherical colloids

  • M. N. PopescuEmail author
  • W. E. Uspal
  • Z. Eskandari
  • M. Tasinkevych
  • S. Dietrich
Open Access
Regular Article
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications

Abstract.

Various aspects of self-motility of chemically active colloids in Newtonian fluids can be captured by simple models for their chemical activity plus a phoretic-slip hydrodynamic boundary condition on their surface. For particles of simple shapes (e.g., spheres) --as employed in many experimental studies-- which move at very low Reynolds numbers in an unbounded fluid, such models of chemically active particles effectively map onto the well studied so-called hydrodynamic squirmers (S. Michelin and E. Lauga, J. Fluid Mech. 747, 572 (2014)). Accordingly, intuitively appealing analogies of “pusher/puller/neutral” squirmers arise naturally. Within the framework of self-diffusiophoresis we illustrate the above-mentioned mapping and the corresponding flows in an unbounded fluid for a number of choices of the activity function (i.e., the spatial distribution and the type of chemical reactions across the surface of the particle). We use the central collision of two active particles as a simple, paradigmatic case for demonstrating that in the presence of other particles or boundaries the behavior of chemically active colloids may be qualitatively different, even in the far field, from the one exhibited by the corresponding “effective squirmer”, obtained from the mapping in an unbounded fluid. This emphasizes that understanding the collective behavior and the dynamics under geometrical confinement of chemically active particles necessarily requires to explicitly account for the dependence of the hydrodynamic interactions on the distribution of chemical species resulting from the activity of the particles.

Graphical abstract

Keywords

Topical issue: Flowing Matter, Problems and Applications 

Notes

Acknowledgments

Open Access funding provided by Max Planck Society.

References

  1. 1.
    R.F. Ismagilov, A. Schwartz, N. Bowden, G.M. Whitesides, Angew. Chem. Int. Ed. 41, 652 (2002)Google Scholar
  2. 2.
    W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K. St. Angelo, Y.Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004)Google Scholar
  3. 3.
    G.A. Ozin, I. Manners, S. Fournier-Bidoz, A. Arsenault, Adv. Mater. 17, 3011 (2005)Google Scholar
  4. 4.
    W.F. Paxton, S. Sundararajan, T.E. Mallouk, A. Sen, Angew. Chem. Int. Ed. 45, 5420 (2006)Google Scholar
  5. 5.
    W.F. Paxton, P.T. Baker, T.R. Kline, Y. Wang, T.E. Mallouk, A. Sen, J. Am. Chem. Soc. 128, 14881 (2006)Google Scholar
  6. 6.
    A.A. Solovev, Y.F. Mei, E.B. Urena, G.S. Huang, O.G. Schmidt, Small 5, 1688 (2009)Google Scholar
  7. 7.
    T. Mirkovic, N.S. Zacharia, G.D. Scholes, G.A. Ozin, Small 6, 159 (2010)Google Scholar
  8. 8.
    S. Fournier-Bidoz, A.C. Arsenault, I. Manners, G.A. Ozin, Chem. Commun. 0, 441 (2005)Google Scholar
  9. 9.
    J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)Google Scholar
  10. 10.
    G. Volpe, I. Buttinoni, D. Vogt, H.J. Kümmerer, C. Bechinger, Soft Matter 7, 8810 (2011)Google Scholar
  11. 11.
    S. Ebbens, M.H. Tu, J.R. Howse, R. Golestanian, Phys. Rev. E 85, 020401(R) (2012)Google Scholar
  12. 12.
    F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni, R. Eichhorn, G. Volpe, H. Löwen, C. Bechinger, Phys. Rev. Lett. 110, 198302 (2013)Google Scholar
  13. 13.
    I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013)Google Scholar
  14. 14.
    T.C. Lee, M. Alarcón-Correa, C. Miksch, K. Hahn, J.G. Gibbs, P. Fischer, Nano Lett. 14, 2407 (2014)Google Scholar
  15. 15.
    S. Ebbens, D.A. Gregory, G. Dunderdale, J.R. Howse, Y. Ibrahim, T.B. Liverpool, R. Golestanian, EPL 106, 58003 (2014)Google Scholar
  16. 16.
    B. ten Hagen, F. Kümmel, R. Wittkowski, D. Takagi, H. Löwen, C. Bechinger, Nat. Commun. 5, 4829 (2014)Google Scholar
  17. 17.
    X. Ma, S. Jang, M.N. Popescu, W.E. Uspal, A. Miguel-López, K. Hahn, D.P. Kim, S. Sánchez, ACS Nano 10, 8751 (2016)Google Scholar
  18. 18.
    S. Herminghaus, C.C. Maas, C. Krüger, S. Thutupalli, L. Goehring, C. Bahr, Soft Matter 10, 7008 (2014)Google Scholar
  19. 19.
    R. Seemann, J.B. Fleury, C.C. Maas, Eur. Phys. J. ST 225, 2227 (2016)Google Scholar
  20. 20.
    K. Kroy, D. Chakraborty, F. Cichos, Eur. Phys. J. ST 225, 2207 (2016)Google Scholar
  21. 21.
    C. Lozano, B. ten Hagen, H. Löwen, C. Bechinger, Nat. Commun. 7, 12828 (2016)Google Scholar
  22. 22.
    R. Golestanian, T.B. Liverpool, A. Ajdari, Phys. Rev. Lett. 94, 220801 (2005)Google Scholar
  23. 23.
    R. Golestanian, T.B. Liverpool, A. Ajdari, New J. Phys. 9, 126 (2007)Google Scholar
  24. 24.
    G.R. Rückner, R. Kapral, Phys. Rev. Lett. 98, 150603 (2007)Google Scholar
  25. 25.
    F. Jülicher, J. Prost, Eur. Phys. J. E 29, 27 (2009)Google Scholar
  26. 26.
    M.N. Popescu, M. Tasinkevych, S. Dietrich, EPL 95, 28004 (2011)Google Scholar
  27. 27.
    B. Sabass, U. Seifert, J. Chem. Phys. 136, 064508 (2012)Google Scholar
  28. 28.
    B. Sabass, U. Seifert, J. Chem. Phys. 136, 214507 (2012)Google Scholar
  29. 29.
    R. Kapral, J. Chem. Phys. 138, 202901 (2013)Google Scholar
  30. 30.
    N. Sharifi-Mood, J. Koplik, C. Maldarelli, Phys. Fluids 25, 012001 (2013)Google Scholar
  31. 31.
    B. ten Hagen, S. van Teeffelen, H. Löwen, J. Phys.: Condens. Matter 23, 194119 (2011)Google Scholar
  32. 32.
    S. Michelin, E. Lauga, Eur. Phys. J. E 38, 7 (2015)Google Scholar
  33. 33.
    J. Hu, A. Wysocki, R.G. Winkler, G. Gompper, Sci. Rep. 5, 9586 (2015)Google Scholar
  34. 34.
    M.N. Popescu, W.E. Uspal, S. Dietrich, Eur. Phys. J. ST 225, 2189 (2016)Google Scholar
  35. 35.
    A. Zöttl, H. Stark, J. Phys.: Condens. Matter 28, 253001 (2016)Google Scholar
  36. 36.
    J. de Graaf, G. Rempfer, C. Holm, IEEE Trans. NanoBiosci. 14, 272 (2015)Google Scholar
  37. 37.
    G. Oshanin, M.N. Popescu, S. Dietrich, J. Phys. A 50, 134001 (2017)MathSciNetGoogle Scholar
  38. 38.
    P.E. Lammert, V.H. Crespi, A. Nourhani, J. Fluid Mech. 802, 294 (2016)MathSciNetGoogle Scholar
  39. 39.
    A.T. Brown, W.C.K. Poon, C. Holm, J. de Graaf, Soft Matter 13, 1200 (2017)Google Scholar
  40. 40.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)Google Scholar
  41. 41.
    S.J. Ebbens, J.R. Howse, Soft Matter 6, 726 (2010)Google Scholar
  42. 42.
    Y. Hong, D. Velegol, N. Chaturvedi, A. Sen, Phys. Chem. Chem. Phys. 12, 1423 (2010)Google Scholar
  43. 43.
    J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)Google Scholar
  44. 44.
    C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Rev. Mod. Phys. 88, 045006 (2016)Google Scholar
  45. 45.
    J.L. Moran, J.D. Posner, Annu. Rev. Fluid Mech. 49, 511 (2016)Google Scholar
  46. 46.
    B.V. Derjaguin, Y.I. Yalamov, A.I. Storozhilova, J. Colloid Interface Sci. 22, 117 (1966)Google Scholar
  47. 47.
    J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)Google Scholar
  48. 48.
    C. Pozrikidis, A Practical Guide to Boundary Element Methods with the Software Library BEMLIB (CRC Press, Boca Raton, 2002)Google Scholar
  49. 49.
    J. Happel, H. Brenner, Low Reynolds number hydrodynamics (Noordhoff Int. Pub., Leyden, The Netherlands, 1973)Google Scholar
  50. 50.
    M.J. Lighthill, Commun. Pure Appl. Math. 5, 109 (1952)Google Scholar
  51. 51.
    J.R. Blake, J. Fluid Mech. 46, 199 (1971)Google Scholar
  52. 52.
    O.S. Pak, E. Lauga, J. Eng. Math. 88, 1 (2014)Google Scholar
  53. 53.
    E. Lauga, W.R. DiLuzio, G.M. Whitesides, H.A. Stone, Biophys. J. 90, 400 (2006)Google Scholar
  54. 54.
    A.P. Berke, L. Turner, H.C. Berg, E. Lauga, Phys. Rev. Lett. 101, 038102 (2008)Google Scholar
  55. 55.
    D. Lopez, E. Lauga, Phys. Fluids 26, 071902 (2014)Google Scholar
  56. 56.
    A.J.T.M. Mathijssen, A. Doostmohammadi, J.M. Yeomans, T.N. Shendruk, J. Fluid Mech. 806, 35 (2016)MathSciNetGoogle Scholar
  57. 57.
    R. Matas Navarro, I. Pagonabarraga, J. Non-Newton. Fluid Mech. 165, 946 (2010)Google Scholar
  58. 58.
    K. Ishimoto, E.A. Gaffney, Phys. Rev. E 88, 062702 (2013)Google Scholar
  59. 59.
    J. de Graaf, A.J.T.M. Mathijssen, M. Fabritius, H. Menke, C. Holm, T.N. Shendruk, Soft Matter 12, 4704 (2016)Google Scholar
  60. 60.
    J.S. Lintuvuori, A.T. Brown, K. Stratford, D. Marenduzzo, Soft Matter 12, 7959 (2016)Google Scholar
  61. 61.
    S. Spagnolie, E. Lauga, J. Fluid Mech. 700, 105 (2012)MathSciNetGoogle Scholar
  62. 62.
    S.E. Spagnolie, G.R. Moreno-Flores, D. Bartolo, E. Lauga, Soft Matter 11, 3396 (2015)Google Scholar
  63. 63.
    D. Takagi, J. Palacci, A.B. Braunschweig, M.J. Shelley, J. Zhang, Soft Matter 10, 1784 (2014)Google Scholar
  64. 64.
    T. Ishikawa, M.P. Simmonds, T.J. Pedley, J. Fluid Mech. 568, 119 (2006)MathSciNetGoogle Scholar
  65. 65.
    D. Papavassiliou, G.P. Alexander, J. Fluid Mech. 813, 618 (2017)MathSciNetGoogle Scholar
  66. 66.
    R. Matas Navarro, I. Pagonabarraga, Eur. Phys. J. E 33, 27 (2010)Google Scholar
  67. 67.
    F. Alarcón, I. Pagonabarraga, J. Mol. Liq. 185, 56 (2013)Google Scholar
  68. 68.
    J.B. Delfau, J. Molina, M. Sano, EPL 114, 24001 (2016)Google Scholar
  69. 69.
    D. Saintillan, M.J. Shelley, Phys. Fluids 20, 123304 (2008)Google Scholar
  70. 70.
    E. Lauga, F. Nadal, EPL 116, 64004 (2016)Google Scholar
  71. 71.
    T. Bickel, A. Majee, A. Würger, Phys. Rev. E 88, 012301 (2013)Google Scholar
  72. 72.
    S. Michelin, E. Lauga, J. Fluid Mech. 747, 572 (2014)MathSciNetGoogle Scholar
  73. 73.
    Y. Ibrahim, T.B. Liverpool, Eur. Phys. J. ST 225, 1843 (2016)Google Scholar
  74. 74.
    L. Baraban, M. Tasinkevych, M.N. Popescu, S. Sánchez, S. Dietrich, O.G. Schmidt, Soft Matter 8, 48 (2012)Google Scholar
  75. 75.
    J. Palacci, S. Sacanna, A.S. Steinberg, D.J. Pine, P.M. Chaikin, Science 339, 936 (2013)Google Scholar
  76. 76.
    F. Ginot, I. Theurkauff, F. Detcheverry, C. Ybert, C. Cottin-Bizonne, Nat. Commun. 9, 696 (2018)Google Scholar
  77. 77.
    W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Soft Matter 11, 434 (2015)Google Scholar
  78. 78.
    A. Mozaffari, N. Sharifi-Mood, J. Koplik, C. Maldarelli, Phys. Fluids 28, 053107 (2016)Google Scholar
  79. 79.
    A.T. Brown, I.D. Vladescu, A. Dawson, T. Vissers, J. Schwarz-Linek, J.S. Lintuvuori, W.C.K. Poon, Soft Matter 12, 131 (2016)Google Scholar
  80. 80.
    A.M. Leshansky, A.A. Golovin, A. Nir, Phys. Fluids 9, 2818 (1997)Google Scholar
  81. 81.
    A. Domínguez, P. Malgaretti, M.N. Popescu, S. Dietrich, Phys. Rev. Lett. 116, 078301 (2016)Google Scholar
  82. 82.
    S. Das, A. Garg, A.I. Campbell, J.R. Howse, A. Sen, D. Velegol, R. Golestanian, S.J. Ebbens, Nat. Commun. 6, 8999 (2015)Google Scholar
  83. 83.
    J. Simmchen, J. Katuri, W.E. Uspal, M.N. Popescu, M. Tasinkevych, S. Sánchez, Nat. Commun. 7, 10598 (2016)Google Scholar
  84. 84.
    W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Phys. Rev. Lett. 117, 048002 (2016)Google Scholar
  85. 85.
    M.N. Popescu, W.E. Uspal, S. Dietrich, J. Phys.: Condens. Matter 29, 134001 (2017)Google Scholar
  86. 86.
    W.E. Uspal, M.N. Popescu, M. Tasinkevych, S. Dietrich, New J. Phys. 20, 015013 (2018)Google Scholar
  87. 87.
    C. Liu, C. Zhou, W. Wang, H.P. Zhang, Phys. Rev. Lett. 117, 198001 (2016)Google Scholar
  88. 88.
    M.N. Popescu, S. Dietrich, G. Oshanin, J. Chem. Phys. 130, 194702 (2009)Google Scholar
  89. 89.
    J. Palacci, S. Sacanna, A. Abramian, J. Barral, K. Hanson, A.Y. Grosberg, D.J. Pine, P.M. Chaikin, Sci. Adv. 1, e1400214 (2015)Google Scholar
  90. 90.
    W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Soft Matter 11, 6613 (2015)Google Scholar
  91. 91.
    J. Katuri, W.E. Uspal, J. Simmchen, A. Miguel López, S. Sánchez, Sci. Adv. 4, eaao1755 (2018)Google Scholar
  92. 92.
    A.I. Campbell, S.J. Ebbens, Langmuir 29, 14066 (2013)Google Scholar
  93. 93.
    M. Enculescu, H. Stark, Phys. Rev. Lett. 107, 058301 (2011)Google Scholar
  94. 94.
    Y. Ibrahim, T.B. Liverpool, EPL 111, 48008 (2015)Google Scholar
  95. 95.
    M.N. Popescu, W.E. Uspal, M. Tasinkevych, S. Dietrich, Eur. Phys. J. E 40, 42 (2017)Google Scholar
  96. 96.
    N. Sharifi-Mood, A. Mozaffari, U.M. Córdova-Figueroa, J. Fluid Mech. 798, 910 (2016)MathSciNetGoogle Scholar
  97. 97.
    S.Y. Reigh, R. Kapral, Soft Matter 11, 3149 (2015)Google Scholar
  98. 98.
    M.N. Popescu, S. Dietrich, M. Tasinkevych, J. Ralston, Eur. Phys. J. E 31, 351 (2010)Google Scholar
  99. 99.
    J.F. Brady, J. Fluid Mech. 667, 216 (2011)MathSciNetGoogle Scholar
  100. 100.
    S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics (North-Holland, Amsterdam, 1962)Google Scholar
  101. 101.
    M. Abramowitz, I.R. Stegun (Editors), Handbook of Mathematical Functions (Dover, New York, 1972)Google Scholar
  102. 102.
    X. Ma, A. Jannasch, U.R. Albrecht, K. Hahn, A. Miguel-López, E. Schäffer, S. Sánchez, Nano Lett. 15, 7043 (2015)Google Scholar
  103. 103.
    G.F. Elfring, Phys. Fluids 27, 023101 (2015)Google Scholar
  104. 104.
    K. Drescher, R.E. Goldstein, N. Michel, M. Polin, I. Tuval, Phys. Rev. Lett. 105, 168101 (2010)Google Scholar
  105. 105.
    Z. Eskandari, unpublished (2016)Google Scholar
  106. 106.
    A. Brown, W.C.K. Poon, Soft Matter 10, 4016 (2014)Google Scholar
  107. 107.
    U.M. Córdova-Figueroa, J.F. Brady, Phys. Rev. Lett. 100, 158303 (2008)Google Scholar
  108. 108.
    W.D. Collins, Math. Proc. Cambridge Philos. Soc. 57, 367 (1961)Google Scholar
  109. 109.
    I.N. Sneddon, Mixed boundary Value in Potential Theory (North-Holland, Amsterdam, The Netherlands, 1966)Google Scholar
  110. 110.
    R. Samson, J.M. Deutch, J. Chem. Phys. 68, 285 (1978)Google Scholar
  111. 111.
    D. Shoup, G. Lipari, A. Szabo, Biophys. J. 36, 697 (1981)Google Scholar
  112. 112.
    D. Shoup, A. Szabo, Biophys. J. 40, 33 (1982)Google Scholar
  113. 113.
    S.D. Traytak, J. Phys. Chem. 98, 7419 (1994)Google Scholar
  114. 114.
    S.D. Traytak, Chem. Phys. 192, 1 (1995)Google Scholar
  115. 115.
    S.D. Traytak, M. Tachiya, J. Chem. Phys. 102, 9240 (1995)Google Scholar
  116. 116.
    S.D. Traytak, M. Tachiya, J. Chem. Phys. 102, 2760 (1995)Google Scholar
  117. 117.
    S.D. Traytak, W.S. Price, J. Chem. Phys. 127, 184508 (2007)Google Scholar
  118. 118.
    P. Malgaretti, M.N. Popescu, S. Dietrich, Soft Matter 14, 1375 (2018)Google Scholar
  119. 119.
    S.Y. Reigh, P. Chuphal, S. Thakur, R. Kapral, Soft Matter 14, 6043 (2018)Google Scholar
  120. 120.
    A. Varma, T.D. Montenegro-Johnson, S. Michelin, Soft Matter 14, 7155 (2018)Google Scholar
  121. 121.
    M. Wagner, M. Ripoll, EPL 119, 66007 (2017)Google Scholar
  122. 122.
    A.M. Leshansky, O. Kenneth, O. Gat, J.E. Avron, New J. Phys. 9, 145 (2007)Google Scholar
  123. 123.
    M. Theers, E. Westphal, G. Gompper, R.G. Winkler, Soft Matter 12, 7372 (2016)Google Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • M. N. Popescu
    • 1
    • 2
    Email author
  • W. E. Uspal
    • 1
    • 2
  • Z. Eskandari
    • 1
    • 2
  • M. Tasinkevych
    • 3
  • S. Dietrich
    • 1
    • 2
  1. 1.Max-Planck-Institut für Intelligente SystemeStuttgartGermany
  2. 2.IV. Institut für Theoretische PhysikUniversität StuttgartStuttgartGermany
  3. 3.Centro de Física Teórica e Computacional, Departamento de Física, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal

Personalised recommendations