Advertisement

Turbulent viscosity profile of drag reducing rod-like polymers

  • Dilafruz Kulmatova
  • Ferhat Hadri
  • Sylvain Guillou
  • Daniel BonnEmail author
Open Access
Regular Article
  • 180 Downloads
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications

Abstract.

Recent theories of drag reduction in wall turbulence assumed that the presence of the polymer leads to an effective viscosity, which increases linearly with the distance from the wall. Such a linear viscosity profile reduces the Reynolds stress (i.e., the momentum flux to the wall), which leads to drag reduction. For the usual flexible polymers employed in drag reduction, the effective viscosity is however a strongly non-linear effect that is difficult to quantify. We therefore investigate the turbulent drag reduction characteristics of a stiff rod-like polymer for which any effective viscosity changes are only due to the orientation of the polymers. The results show that close to the walls the polymers orient and the viscosity is low, whereas in the bulk the polymers are randomly oriented and the effective viscosity is high. This indeed leads to a reduction of the Reynolds stress and hence to a drag reduction.

Graphical abstract

Keywords

Topical issue: Flowing Matter, Problems and Applications 

References

  1. 1.
    A. Gyr, H.W. Bewersdorff, Drag Reduction of Turbulent Flows by Additives (Kluwer Academic, Dordrecht, 1995)Google Scholar
  2. 2.
    G.C. Liaw, J.L. Zakin, G.K. Patterson, AIChE J. 17, 391 (1971)CrossRefGoogle Scholar
  3. 3.
    F. Nieuwstadt, J. Den Toonder, Drag reduction by additives: a review, in Turbulence Structure and Motion, edited by A. Soldati, R. Monti (Springer Verlag, New York, 2001) pp. 269--316Google Scholar
  4. 4.
    D. Bonn, Y. Amarouchene, C. Wagner, S. Douady, O. Cadot, J. Phys.: Condens. Matter 17, S1195 (2005)Google Scholar
  5. 5.
    M.D. Graham, Phys. Fluids 26, 101301 (2014)CrossRefGoogle Scholar
  6. 6.
    J.L. Lumley, Annu. Rev. Fluid. Mech. 1, 367 (1969)CrossRefGoogle Scholar
  7. 7.
    J.L. Lumley, J. Polym. Sci.: Macro Rev. 7, 263 (1973)Google Scholar
  8. 8.
    V.S. L’vov, A. Pomyalov, I. Procaccia, V. Tiberkevich, Phys. Rev. Lett. 92, 24 (2004)Google Scholar
  9. 9.
    E. De Angelis, C.M. Casciola, V.S. L’vov, A. Pomyalov, I. Procaccia, V. Tiberkevich, Phys. Rev. E 70, 055301 (2004)CrossRefGoogle Scholar
  10. 10.
    R. Benzi, E.S.C. Ching, T.S. Lo, V.S. L’vov, I. Procaccia, Phys. Rev. E 72, 016305 (2005)CrossRefGoogle Scholar
  11. 11.
    C. Wagner, Y. Amarouchene, P. Doyle, D. Bonn, EPL 64, 823 (2003)CrossRefGoogle Scholar
  12. 12.
    A. Lindner, J. Vermant, D. Bonn, Physica A: Stat. Mech. Appl. 319, 125 (2003)CrossRefGoogle Scholar
  13. 13.
    R. Benzi, E. Ching, E. de Angelis, I. Procaccia, Phys. Rev. E 77, 046309 (2008)CrossRefGoogle Scholar
  14. 14.
    M.A. Tracy, R. Pecora, Annu. Rev. Phys. Chem. 43, 525 (1992)CrossRefGoogle Scholar
  15. 15.
    J.S. Paschkewitz, C.D. Dimitropoulos, Y.X. Hou, V.S.R. Somandepalli, M.G. Mungal, E.S.G. Shaqfeh, P. Moin, Phys. Fluids 17, 085101 (2005)CrossRefGoogle Scholar
  16. 16.
    D. Bonn, J. Meunier, Phys. Rev. Lett. 79, 2662 (1997)CrossRefGoogle Scholar
  17. 17.
    S. Rafai, D. Bonn, A. Boudaoud, J. Fluid Mech. 513, 77 (2004)CrossRefGoogle Scholar
  18. 18.
    C. Wagner, Y. Amarouchene, D. Bonn, J. Eggers, Phys. Rev. Lett. 95, 164504 (2005)CrossRefGoogle Scholar
  19. 19.
    M.A. Zirnsak, D.V. Boger, J. Non-Newton. Fluid Mech. 79, 105 (1998)CrossRefGoogle Scholar
  20. 20.
    N.B. Wyatt, C.M. Gunther, M.W. Liberatire, J. Non-Newton. Fluid Mech. 166, 25 (2011)CrossRefGoogle Scholar
  21. 21.
    C.H. Hong, H.J. Choi, K. Zhang, F. Renou, M. Grisel, Carbohydr. Polym. 121, 342 (2015)CrossRefGoogle Scholar
  22. 22.
    F. Hadri, A. Besq, S. Guillou, R. Makhloufi, J. Non-Newton. Fluid Mech. 166, 326 (2011)CrossRefGoogle Scholar
  23. 23.
    P.K. Ptasinski, F.T.M. Nieuwstadt, B.H.A.A. Van Den Brule, M.A. Hulsen, Flow Turbul. Combust. 66, 159 (2001)CrossRefGoogle Scholar
  24. 24.
    D.T. Walker, W.G. Tiederman, J. Fluid Mech. 218, 377 (1990)CrossRefGoogle Scholar
  25. 25.
    J.M.J. Den Toonder, M.A. Hulsen, G.D.C. Kuiken, F.T.M. Nieuwstadt, J. Fluid Mech. 337, 193 (1997)CrossRefGoogle Scholar
  26. 26.
    J.L. Zakin, J. Myska, Z. Chara, AIChE J. 42, 3544 (1996)CrossRefGoogle Scholar
  27. 27.
    N.S. Berman, Annu. Rev. Fluid Mech. 10, 47 (1978)CrossRefGoogle Scholar
  28. 28.
    M.D. Warholic, G.M. Schmidt, T.J. Hanratty, J. Fluid Mech. 388, 1 (1999)CrossRefGoogle Scholar
  29. 29.
    M.D. Warholic, H. Massah, T.J. Hanratty, Exp. Fluids 27, 461 (1999)CrossRefGoogle Scholar
  30. 30.
    K. Hoyer, A. Gyr, J. Non-Newton. Fluid Mech. 65, 221 (1996)CrossRefGoogle Scholar
  31. 31.
    P. Schfimmer, W. Thielen, Chem. Eng. Commun. 4, 593 (1981)CrossRefGoogle Scholar
  32. 32.
    H. Giesekus, Structure of turbulence in drag reducing fluids, Lecture Series 1981--86 (Von Kfirmfin Institute for Fluid Dynamics, Rhode-Saint-Gense, Belgium, 1981)Google Scholar
  33. 33.
    M. Lesieur, Turbulence in Fluids (Springer, Dordrecht, 2008)Google Scholar
  34. 34.
    Y. Amarouchene, D. Bonn, H. Kellay, T.S. Lo, V.S. L’vov, I. Procaccia, Phys. Fluids 20, 065108 (2008)CrossRefGoogle Scholar
  35. 35.
    J. Drappier, T. Divoux, Y. Amarouchene, F. Bertrand, S. Rodts, O. Cadot, J. Meunier, D. Bonn, Europhys. Lett. 74, 362 (2005)CrossRefGoogle Scholar
  36. 36.
    C. Wagner, Y. Amarouchene, P. Doyle, D. Bonn, Europhys. Lett. 64, 823 (2003)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Dilafruz Kulmatova
    • 1
  • Ferhat Hadri
    • 2
  • Sylvain Guillou
    • 3
  • Daniel Bonn
    • 1
    Email author
  1. 1.Institute of PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Laboratoire d’Ingénierie des Systèmes de Versailles (LISV)VelizyFrance
  3. 3.LUSACUniversity of Caen NormandyCherbourg-OctevilleFrance

Personalised recommendations