Gravity effects on mixing with magnetic micro-convection in microfluidics

  • G. KitenbergsEmail author
  • A. Tatuļčenkovs
  • L. Puķina
  • A. Cēbers
Regular Article
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications


Mixing remains an important problem for the development of successful microfluidic and lab-on-a-chip devices, where simple and predictable systems are particularly interesting. One is magnetic micro-convection, an instability happening on the interface of miscible magnetic and non-magnetic fluids in a Hele-Shaw cell under applied field. Previous work proved that the Brinkman model quantitatively explains the experiments. However, a gravity-caused convective motion complicated the tests. Here we first improve the experimental system to exclude the parasitic convection. Afterwards, we experimentally observe the magnetic micro-convection, by finding and quantifying how gravity and laminar flow stabilizes the perturbations that create it. Accordingly, we improve our theoretical model for a zero-flow condition and perform a linear analysis. Two dimensionless quantities --magnetic and gravitational Rayleigh numbers-- are used to compare the experimental observations and theoretical predictions for the critical field of instability and the characteristic size of the emerging pattern. Finally, we discuss the conditions at which gravity plays an important role in microfluidic systems.

Graphical abstract


Topical issue: Flowing Matter, Problems and Applications 


  1. 1.
    H.A. Stone, A.D. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004)CrossRefGoogle Scholar
  2. 2.
    G. Cai, L. Xue, H. Zhang, J. Lin, Micromachines 8, 274 (2017)CrossRefGoogle Scholar
  3. 3.
    R.-J. Yang, H.-H. Hou, Y.-N. Wang, L.-M. Fu, Sens. Actuators, B 224, 1 (2016)CrossRefGoogle Scholar
  4. 4.
    X. Chen, L. Zhang, Microchim. Acta 184, 3639 (2017)CrossRefGoogle Scholar
  5. 5.
    G. Kitenbergs, K. Erglis, R. Perzynski, A. Cebers, J. Magn. & Magn. Mater. 380, 227 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Maiorov, A. Cebers, Magnetohydrodynamics 19, 376 (1983)Google Scholar
  7. 7.
    K. Erglis, A. Tatulcenkov, G. Kitenbergs, O. Petrichenko, F.G. Ergin, B.B. Watz, A. Cebers, J. Fluid Mech. 714, 612 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    G. Kitenbergs, A. Tatulcenkovs, K. Erglis, O. Petrichenko, R. Perzynski, A. Cebers, J. Fluid Mech. 774, 170 (2015)CrossRefGoogle Scholar
  9. 9.
    M. Igonin, A. Cebers, Phys. Fluids 15, 1734 (2003)CrossRefGoogle Scholar
  10. 10.
    C. Derec, P. Boltenhagen, S. Neveu, J.-C. Bacri, Magnetohydrodynamics 44, 135 (2008)Google Scholar
  11. 11.
    C.-Y. Wen, C.-Y. Chen, D. Kuan, Phys. Fluids 19, 084101 (2007)CrossRefGoogle Scholar
  12. 12.
    H. Li, C.-Y. Kao, C.-Y. Wen, J. Fluid Mech. 836, 375 (2018)Google Scholar
  13. 13.
    M.-Y. Chen, L.-Q. Chen, H. Li, C.-Y. Wen, Phys. Fluids 29, 024109 (2017)CrossRefGoogle Scholar
  14. 14.
    G. Kitenbergs, Hydrodynamic instabilities in microfluidic magnetic fluid flows, PhD Thesis, UPMC & Univ. Latvia (2015)Google Scholar
  15. 15.
    R. Massart, IEEE Trans. Magn. 17, 1247 (1981)CrossRefGoogle Scholar
  16. 16.
    A. Cebers, Magnetohydrodynamics 33, 48 (1997)MathSciNetGoogle Scholar
  17. 17.
    A. Cebers, Magnetohydrodynamics 17, 113 (1981)Google Scholar
  18. 18.
    D.P. Jackson, R.E. Goldstein, A. Cebers, Phys. Rev. E 50, 298 (1994)CrossRefGoogle Scholar
  19. 19.
    B.T. Huang, M. Roger, M. Bonetti, T.J. Salez, C. Wiertel-Gasquet, E. Dubois, R. Cabreira Gomes, G. Demouchy, G. Mriguet, V. Peyre, M. Kouyat, C.L. Filomeno, J. Depeyrot, F.A. Tourinho, R. Perzynski, S. Nakamae, J. Chem. Phys. 143, 7 (2015)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • G. Kitenbergs
    • 1
    Email author
  • A. Tatuļčenkovs
    • 1
  • L. Puķina
    • 1
  • A. Cēbers
    • 1
    • 2
  1. 1.MMML lab, Department of PhyscisUniversity of LatviaRigaLatvia
  2. 2.Chair of Theoretical Physics, Department of PhysicsUniversity of LatviaRigaLatvia

Personalised recommendations