Advertisement

A note on evolution of pressure and flow within an evaporating capillary bridge

  • Shu YangEmail author
  • Bolesław Mielniczuk
  • Moulay Saïd El Youssoufi
  • Tomasz Hueckel
Regular Article
  • 70 Downloads

Abstract.

Experiments with evaporation of capillary bridges between two glass spheres show that the bridge gorge radius decreases much faster than the contact radius, distorting the original constant mean curvature bridge shape. In addition, the Laplace pressure calculated from local principal curvatures exhibits high gradients along the bridge moving external surface, most commonly with a high suction near the triple phase contact and positive pressure near the gorge. The high suction results from a negative external curvature at contact. Numerical dynamic simulations with a moving evaporating interface do not currently allow for reproducing a negative external curvature at contact. A series of static simulations are shown based on a representation of an experimentally observed interface, which does include the negative curvature at contact. The resulting Laplace pressure distribution is close to the experimental ones. Most importantly, the pressure gradients induce a consistent flow of liquid from the central area of the bridge, axially toward the solid contact, and then along the solid interface toward the contact area. The flow is believed to contribute to contact pinning. Pinning is viewed as one of the precursors of capillary bridge rupture.

Graphical abstract

Keywords

Flowing Matter: Interfacial phenomena 

References

  1. 1.
    H. Péron, T. Hueckel, L. Laloui, L.B. Hu, Can. Geotechn. J. 46, 1177 (2009)CrossRefGoogle Scholar
  2. 2.
    H. Péron, L. Laloui, T. Hueckel, L.B. Hu, Eur. J. Environ. Civil Eng. 13, 869 (2009)CrossRefGoogle Scholar
  3. 3.
    L.B. Hu, H. Péron, T. Hueckel, L. Laloui, Int. J. Numer. Anal. Methods Geomech. 37, 1761 (2013)CrossRefGoogle Scholar
  4. 4.
    L.B. Hu, H. Péron, T. Hueckel, L. Laloui, Int. J. Numer. Anal. Methods Geomech. 37, 1782 (2013)CrossRefGoogle Scholar
  5. 5.
    T. Hueckel, B. Mielniczuk, M.S. El Youssoufi, L.B. Hu, L. Laloui, Acta Geophys. 62, 1049 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    T. Young, Philos. Trans. 95, 65 (1805)CrossRefGoogle Scholar
  7. 7.
    P.S. Laplace, Traité de Mécanique Céleste, Vol. 4, Supplément au dixième livre du Traité de Mécanique Céleste (Courcier, Paris, France, 1805) pp. 1--79Google Scholar
  8. 8.
    L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Elsevier, 2007)Google Scholar
  9. 9.
    K. Hotta, K. Takeda, K. Iinoya, Powder Technol. 10, 231 (1974)CrossRefGoogle Scholar
  10. 10.
    G. Lian, C. Thornton, M.J. Adams, Colloid Interface Sci. 161, 138 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    C.H. Delaunay, J. Math. Pures Appl. 6, 309 (1841)Google Scholar
  12. 12.
    G. Gagneux, O. Millet, Transp. Porous Medion 105, 117 (2014)CrossRefGoogle Scholar
  13. 13.
    P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    C. Bourges-Monnier, M.E.R. Shanahan, Langmuir 11, 2820 (1995)CrossRefGoogle Scholar
  15. 15.
    H.Y. Erbil, Cheminform 170, 67 (2012)Google Scholar
  16. 16.
    E. Bormashenko, Colloid Polym. Sci. 291, 339 (2013)CrossRefGoogle Scholar
  17. 17.
    B. Mielniczuk, T. Hueckel, M.S. El Youssoufi, in Geo-Congress 2013, (ASCE, 2013) pp. 808--817,  https://doi.org/10.1061/9780784412787.082
  18. 18.
    B. Mielniczuk, T. Hueckel, M.S. El Youssoufi, Granular Matter 16, 815 (2014)CrossRefGoogle Scholar
  19. 19.
    B. Mielniczuk, T. Hueckel, M.S. El Youssoufi, Powder Technol. 283, 137 (2015)CrossRefGoogle Scholar
  20. 20.
    N. Maeda, J.N. Israelachvili, M.M. Kohonen, Proc. Natl. Acad. Sci. U.S.A. 100, 803 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    C.D. Willett, M.J. Adams, S.A. Johnson, J.P.K. Seville, Powder Technol. 130, 63 (2003)CrossRefGoogle Scholar
  22. 22.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    H. Hu, R.G. Larson, Phys. Chem. B 106, 1334 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    A. Marmur, Soft Matter 2, 12 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    R.N. Wentzel, Ind. Eng. Chem. 28, 988 (1936)CrossRefGoogle Scholar
  26. 26.
    A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944)CrossRefGoogle Scholar
  27. 27.
    M.E.R. Shanahan, Langmuir 11, 1041 (1995)CrossRefGoogle Scholar
  28. 28.
    G. Whyman, E. Bormashenko, Langmuir 27, 8171 (2011)CrossRefGoogle Scholar
  29. 29.
    E. Bormashenko, A. Musin, G. Whyman, M. Zinigrad, Langmuir 28, 3460 (2012)CrossRefGoogle Scholar
  30. 30.
    H. Hu, R.G. Larson, Langmuir 21, 3963 (2005)CrossRefGoogle Scholar
  31. 31.
    G. Berteloot, C.T. Pham, A. Daerr, F. Lequeux, L. Limat, EPL 83, 14003 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    N. Murisic, L. Kondic, J. Fluid Mech. 679, 219 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    S. Gaudet, G.H. McKinley, H.A. Stone, Phys. Fluids 8, 2568 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    H. Hu, R.G. Larson, Langmuir 21, 3972 (2005)CrossRefGoogle Scholar
  35. 35.
    C.M. Ma, T. Hueckel, Int. J. Eng. Sci. 30, 1567 (1992)CrossRefGoogle Scholar
  36. 36.
    Y. Yang, L. Zhou, X. Du, Y. Yang, Langmuir 34, 3853 (2018)CrossRefGoogle Scholar
  37. 37.
    B. Mielniczuk, O. Millet, G. Gagneux, M.S. El Youssoufi, Granular Matter 20, 14 (2018)CrossRefGoogle Scholar
  38. 38.
    J.B. Bostwick, P.H. Steen, Annu. Rev. Fluid Mech. 47, 539 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    P.G. de Gennes, F. Brochard-Wyart, D. Quéré, Gouttes, bulles, perles et ondes (Belin, 2002)Google Scholar
  40. 40.
    B. Mielniczuk, L. Sabbatier, T. Hueckel, M.S. El Youssoufi, Acta Geophys. 62, 1087 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    R. Scardovelli, S. Zaleski, Annu. Rev. Fluid, Mech. 31, 567 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    S. Afkhami, S. Zaleski, M. Bussmann, J. Comput. Phys. 228, 5370 (2009)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    P.T. Yue, C.F. Zhou, J.J. Feng, C.F. Ollivier-Gooch, H.H. Hu, J. Comput. Phys. 219, 47 (2006)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    E. Ramé, S. Garoff, J. Colloid Interface Sci. 177, 234 (1996)ADSCrossRefGoogle Scholar
  45. 45.
    T.D. Blake, M. Bracke, Y.D. Shikhmurzaev, Phys. Fluids 11, 1995 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    C. Huh, L.E. Scriven, J. Colloid Interface Sci. 35, 85 (1971)ADSCrossRefGoogle Scholar
  47. 47.
    V.E.B. Dussan., Annu. Rev. Fluid Mech. 11, 371 (1979)ADSCrossRefGoogle Scholar
  48. 48.
    Y.D. Shikhmurzaev, Physica D 217, 121 (2006)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    J.F. Gerbeau, T. Lelievre, Comput. Methods Appl. Mech. Eng. 198, 644 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    J.H. Snoeijer, B. Andreotti, Annu. Rev. Fluid Mech. 45, 269 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    J.P. Gras, J.Y. Delenne, M.S. El Youssoufi, Granular Matter 15, 49 (2013)CrossRefGoogle Scholar
  52. 52.
    J. Donea, S. Giuliani, J.P. Halleux, Comput. Methods Appl. Mech. Eng. 33, 689 (1982)ADSCrossRefGoogle Scholar
  53. 53.
    P.M. Knupp, Proceedings of the 7th International Meshing Roundtable'98 (Sandia National Laboratories, 1998) pp. 449--457Google Scholar
  54. 54.
    T.F. Irvine, P.E. Liley, Steam and Gas Tables with Computer Equations (Academic Press, New York, NY, 1984)Google Scholar
  55. 55.
    E. Keita, S.A. Koehler, P. Faure, D.A. Weitz, P. Coussot, Eur. Phys. J. E 39, 23 (2016)CrossRefGoogle Scholar
  56. 56.
    J.C. Fernandez-Toledano, T.D. Blake, P. Lambert, J. De Coninck, Adv. Colloid Interface Sci. 245, 102 (2017)CrossRefGoogle Scholar
  57. 57.
    A.Y. Rednikov, P. Colinet, Phys. Rev. Fluids 2, 124006 (2017)ADSCrossRefGoogle Scholar
  58. 58.
    B. Sobac, D. Brutin, in Droplet Wetting and Evaporation: From Pure to Complex Fluids, edited by B. Sobac, D. Brutin (Academic Press, 2015) pp. 103--114Google Scholar
  59. 59.
    S.J.S. Morris, J. Fluid Mech. 432, 1 (2001)ADSGoogle Scholar
  60. 60.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Phys. Rev. E 62, 756 (2000)ADSCrossRefGoogle Scholar
  61. 61.
    V.E.B. Dussan, S.H. Davis, J. Fluid Mech. 65, 71 (1974) part 1ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shu Yang
    • 1
    Email author
  • Bolesław Mielniczuk
    • 2
  • Moulay Saïd El Youssoufi
    • 3
  • Tomasz Hueckel
    • 4
    • 1
  1. 1.Duke University, Mechanical Engineering and Materials Science Dept.DurhamUSA
  2. 2.Laboratoire de Mécanique et Génie Civil (Université de Montpellier-CNRS)MontpellierFrance
  3. 3.LMGC (Université de Montpellier-CNRS) & MIST Laboratory (IRSN-CNRS-Université de Montpellier)MontpellierFrance
  4. 4.Duke University, Civil and Environmental Engineering Dept.DurhamUSA

Personalised recommendations