Advertisement

Nematic-isotropic transition in a density-functional theory for hard spheroidal colloids

  • E. S. NascimentoEmail author
Regular Article

Abstract.

We introduce a density-functional formalism based on the Parsons-Lee and the generalized van der Waals theories in order to describe the thermodynamics of anisotropic particle systems with steric interactions. For ellipsoids of revolution, the orientational distribution function is obtained by minimizing the free energy functional and the equations of state are determined. The system exhibits a nematic-isotropic discontinuous transition, characterized by a phase separation between nematic and isotropic phases at finite as well low packing fractions. The model presents a phase behavior which is in good agreement with Monte Carlo simulations for finite aspect ratios.

Graphical abstract

Keywords

Soft Matter: Liquid crystals 

References

  1. 1.
    L. Mederos, E. Velasco, Y. Martines-Raton, J. Phys.: Condens. Matter 26, 463101 (2014)Google Scholar
  2. 2.
    M. Dijkstra, Adv. Chem. Phys. 156, 35 (2014)Google Scholar
  3. 3.
    D. Frenkel, Nat. Mater. 14, 9 (2014)CrossRefGoogle Scholar
  4. 4.
    P.F. Damasceno, M. Engel, S.C. Glotzer, Science 337, 453 (2012)CrossRefGoogle Scholar
  5. 5.
    P. Tarazona, Mol. Phys. 52, 81 (1984)CrossRefGoogle Scholar
  6. 6.
    P. Bolhuis, D. Frenkel, J. Chem. Phys. 106, 666 (1997)CrossRefGoogle Scholar
  7. 7.
    D. Frenkel, B.M. Mulder, J.P. McTague, Phys. Rev. Lett. 52, 287 (1984)CrossRefGoogle Scholar
  8. 8.
    D. Frenkel, B.M. Munder, Mol. Phys. 55, 1171 (1985)CrossRefGoogle Scholar
  9. 9.
    G. Odriozola, J. Chem. Phys. 136, 134505 (2012)CrossRefGoogle Scholar
  10. 10.
    G. Evans, Mol. Phys. 76, 1359 (1992)CrossRefGoogle Scholar
  11. 11.
    Y. Martínez-Ratón, E. Velasco, J. Chem. Phys. 129, 054907 (2008)CrossRefGoogle Scholar
  12. 12.
    A. Kuijk, D.V. Byelov, A.V. Petukhov, A. van Blaaderen, A. Imhof, Faraday Discuss. 159, 181 (2012)CrossRefGoogle Scholar
  13. 13.
    F.M. van der Kooij, H.N. Lekkerkerker, J. Phys. Chem. B 102, 7829 (1998)CrossRefGoogle Scholar
  14. 14.
    B.J. Lemaire, P. Davidson, J. Ferré, J.P. Jamet, P. Panine, I. Dozov, J.P. Jolivet, Phys. Rev. Lett. 88, 125507 (2002)CrossRefGoogle Scholar
  15. 15.
    H.N.W. Lekkerkerker, G.J. Vroege, Philos. Trans. R. Soc. A 371, 20120263 (2013)CrossRefGoogle Scholar
  16. 16.
    L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949)CrossRefGoogle Scholar
  17. 17.
    J.P. Straley, Mol. Cryst. Liq. Cryst. 24, 7 (1973)CrossRefGoogle Scholar
  18. 18.
    G. Cinacchi, F. Schmid, J. Phys.: Condens. Matter 14, 12223 (2002)Google Scholar
  19. 19.
    E.S. Nascimento, P. Palffy-Muhoray, J.M. Taylor, E.G. Virga, X. Zheng, Phys. Rev. E 96, 022704 (2017)CrossRefGoogle Scholar
  20. 20.
    J.D. Parsons, Phys. Rev. A 19, 1225 (1979)CrossRefGoogle Scholar
  21. 21.
    Sin-Doo Lee, J. Chem. Phys. 87, 4972 (1987)CrossRefGoogle Scholar
  22. 22.
    Sin-Doo Lee, J. Chem. Phys. 89, 7036 (1988)CrossRefGoogle Scholar
  23. 23.
    N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969)CrossRefGoogle Scholar
  24. 24.
    J.H. Vera, J.M. Prausnitz, Chem. Eng. J. 3, 1 (1972)CrossRefGoogle Scholar
  25. 25.
    S.I. Sandler, Fluid Phase Equilib. 19, 223 (1985)CrossRefGoogle Scholar
  26. 26.
    Y.S. Wei, R.J. Sadus, AIChE J. 46, 169 (2000)CrossRefGoogle Scholar
  27. 27.
    S. Nordholm, M. Johnson, B.C. Freasier, Aus. J. Chem. 33, 2139 (1980)CrossRefGoogle Scholar
  28. 28.
    B.C. Freasier, C.E. Woodward, S. Nordholm, J. Chem. Phys. 90, 5657 (1989)CrossRefGoogle Scholar
  29. 29.
    A. Samborski, G.T. Evans, C.P. Mason, M.P. Allen, Mol. Phys. 81, 263 (1994)CrossRefGoogle Scholar
  30. 30.
    P.J. Camp, C.P. Marson, M.P. Allen, A.A. Khae, D.A. Kofke, J. Chem Phys. 105, 2837 (1996)CrossRefGoogle Scholar
  31. 31.
    A. Isihara, J. Chem. Phys. 19, 1142 (1951)MathSciNetCrossRefGoogle Scholar
  32. 32.
    M. Piastra, E.G. Virga, Phys. Rev. E. 91, 062503 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    T. Kihara, Rev. Mod. Phys. 25, 831 (1953)CrossRefGoogle Scholar
  34. 34.
    B. Mulder, Mol. Phys. 103, 1411 (2005)CrossRefGoogle Scholar
  35. 35.
    G. Singh, B. Kumar, Ann. Phys. 294, 24 (2001)CrossRefGoogle Scholar
  36. 36.
    H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985)Google Scholar
  37. 37.
    G. Vertogen, W.H. de Jeu, Thermotropic Liquid Crystals, Fundamentals (Springer-Verlag, Berlin Heidelberg, 1988)Google Scholar
  38. 38.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Clarendon Prees, Oxford, 1995)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  2. 2.Liquid Crystal InstituteKent State UniversityKentUSA

Personalised recommendations