Advertisement

The swimming of a deforming helix

  • Lyndon KoensEmail author
  • Hang Zhang
  • Martin Moeller
  • Ahmed Mourran
  • Eric Lauga
Open Access
Regular Article
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications

Abstract.

Many microorganisms and artificial microswimmers use helical appendages in order to generate locomotion. Though often rotated so as to produce thrust, some species of bacteria such Spiroplasma, Rhodobacter sphaeroides and Spirochetes induce movement by deforming a helical-shaped body. Recently, artificial devices have been created which also generate motion by deforming their helical body in a non-reciprocal way (A. Mourran et al. Adv. Mater. 29, 1604825, 2017). Inspired by these systems, we investigate the transport of a deforming helix within a viscous fluid. Specifically, we consider a swimmer that maintains a helical centreline and a single handedness while changing its helix radius, pitch and wavelength uniformly across the body. We first discuss how a deforming helix can create a non-reciprocal translational and rotational swimming stroke and identify its principle direction of motion. We then determine the leading-order physics for helices with small helix radius before considering the general behaviour for different configuration parameters and how these swimmers can be optimised. Finally, we explore how the presence of walls, gravity, and defects in the centreline allow the helical device to break symmetries, increase its speed, and generate transport in directions not available to helices in bulk fluids.

Graphical abstract

Keywords

Topical issue: Flowing Matter, Problems and Applications 

References

  1. 1.
    G. Taylor, Proc. R. Soc. A: Math. Phys. Eng. Sci. 209, 447 (1951)ADSCrossRefGoogle Scholar
  2. 2.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    E.A. Gaffney, H. Gadêlha, D.J. Smith, J.R. Blake, J.C. Kirkman-Brown, Annu. Rev. Fluid Mech. 43, 501 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    E. Lauga, Annu. Rev. Fluid Mech. 48, 105 (2016)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    L.E. Becker, S.A. Koehler, H.A. Stone, J. Fluid Mech. 490, 15 (2003)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    E.M. Purcell, Am. J. Phys 45, 3 (1977)ADSCrossRefGoogle Scholar
  8. 8.
    L. Turner, W. Ryu, H. Berg, J. Bacteriol. 182, 2793 (2000)CrossRefGoogle Scholar
  9. 9.
    S. Chattopadhyay, R. Moldovan, C. Yeung, X. Wu, Proc. Natl. Acad. Sci. U.S.A. 103, 13712 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    R.E. Goldstein, Annu. Rev. Fluid Mech. 47, 343 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    J. Hu, M. Yang, G. Gompper, R.G. Winkler, Soft Matter 11, 7867 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    T.C. Adhyapak, H. Stark, Soft Matter 12, 5621 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    M. Hintsche, V. Waljor, R. Großmann, M.J. Kühn, K.M. Thormann, F. Peruani, C. Beta, Sci. Rep. 7, 16771 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    E.E. Riley, D. Das, E. Lauga, Swimming of peritrichous bacteria is enabled by an elastohydrodynamic instability, arXiv:1806.01902 (2018)Google Scholar
  15. 15.
    J. Locsei, J. Math. Biol. 55, 41 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    J.T. Locsei, T.J. Pedley, Bull. Math. Biol. 71, 1089 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    K. Drescher, R.E. Goldstein, I. Tuval, Proc. Natl. Acad. Sci. U.S.A. 107, 11171 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    A. Buchmann, L.J. Fauci, K. Leiderman, E. Strawbridge, L. Zhao, Phys. Rev. E 97, 023101 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    S. Spagnolie, E. Lauga, J. Fluid Mech. 700, 105 (2012)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    P. Denissenko, V. Kantsler, D.J. Smith, J. Kirkman-Brown, Proc. Natl. Acad. Sci. U.S.A. 109, 8007 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    H. Shum, E.A. Gaffney, Phys. Rev. E 91, 033012 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    S. Bianchi, F. Saglimbeni, R. Di Leonardo, Phys. Rev. X 7, 011010 (2017)Google Scholar
  23. 23.
    M.J. Kühn, F.K. Schmidt, B. Eckhardt, K.M. Thormann, Proc. Natl. Acad. Sci. U.S.A. 114, 6340 (2017)CrossRefGoogle Scholar
  24. 24.
    F. Ullrich, F. Qiu, J. Pokki, T. Huang, S. Pane, B.J. Nelson, Swimming characteristics of helical microrobots in fibrous environments, in 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics, (IEEE, 2016) pp. 470--475Google Scholar
  25. 25.
    A.K. Balin, A. Zöttl, J.M. Yeomans, T.N. Shendruk, Phys. Rev. Fluids 2, 113102 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    A. Zöttl, J.M. Yeomans, Enhanced bacterial swimming speeds in macromolecular polymer solutions, arXiv:1710.03505 (2017)Google Scholar
  27. 27.
    N. Ho, K. Leiderman, S. Olson, A 3-dimensional model of flagellar swimming in a Brinkman fluid, arXiv:1804.06271 (2018)Google Scholar
  28. 28.
    G. Lumay, N. Obara, F. Weyer, N. Vandewalle, Soft Matter 9, 2420 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    G. Grosjean, G. Lagubeau, A. Darras, M. Hubert, G. Lumay, N. Vandewalle, Sci. Rep. 5, 16035 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    A. Walther, A.H.E. Müller, Soft Matter 4, 663 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    R. Mangal, K. Nayani, Y.-K. Kim, E. Bukusoglu, U.M. Córdova-Figueroa, N.L. Abbott, Langmuir 33, 10917 (2017)CrossRefGoogle Scholar
  32. 32.
    L. Zhang, K.E. Peyer, B.J. Nelson, Lab Chip 10, 2203 (2010)CrossRefGoogle Scholar
  33. 33.
    S. Tottori, L. Zhang, F. Qiu, K.K. Krawczyk, A. Franco-Obregón, B.J. Nelson, Adv. Mater. 24, 811 (2012)CrossRefGoogle Scholar
  34. 34.
    S. Tottori, B.J. Nelson, Biomicrofluidics 7, 061101 (2013)CrossRefGoogle Scholar
  35. 35.
    E. Diller, J. Zhuang, G. Zhan Lum, M.R. Edwards, M. Sitti, Appl. Phys. Lett. 104, 174101 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    T. Xu, H. Yu, H. Zhang, C.-I. Vong, and L. Zhang, Morphologies and swimming characteristics of rotating magnetic swimmers with soft tails at low Reynolds numbers, in 2015 IEEE/RSJ International Conference on Intelligent Robots Systems, Hamburg, Germany (IEEE, 2015) pp. 1385--1390Google Scholar
  37. 37.
    A. Mourran, H. Zhang, R. Vinokur, M. Möller, Adv. Mater. 29, 1604825 (2017)CrossRefGoogle Scholar
  38. 38.
    H. Sayyaadi, A. Motekallem, Int. J. Marit. Technol. 8, 35 (2017)CrossRefGoogle Scholar
  39. 39.
    J. Ali, U.K. Cheang, J.D. Martindale, M. Jabbarzadeh, H.C. Fu, M. Jun Kim, Sci. Rep. 7, 14098 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    J.W. Shaevitz, J.Y. Lee, D.A. Fletcher, Cell 122, 941 (2005)CrossRefGoogle Scholar
  41. 41.
    C.R. Calladine, J. Mol. Biol. 118, 457 (1978)CrossRefGoogle Scholar
  42. 42.
    C.R. Calladine, B.F. Luisi, J.V. Pratap, J. Mol. Biol. 425, 914 (2013)CrossRefGoogle Scholar
  43. 43.
    H. Wada, R.R. Netz, EPL 82, 28001 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    R. Vogel, H. Stark, Eur. Phys. J. E 33, 259 (2010)CrossRefGoogle Scholar
  45. 45.
    W. Ko, S. Lim, W. Lee, Y. Kim, H.C. Berg, C.S. Peskin, Phys. Rev. E 95, 063106 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    H. Berg, Random Walks in Biology (Princeton University Press, Princeton, N.J., 1983)Google Scholar
  47. 47.
    G. Rosser, R.E. Baker, J.P. Armitage, A.G. Fletcher, J. R. Soc. Interface 11, 20140320 (2014)CrossRefGoogle Scholar
  48. 48.
    S.F. Goldstein, N.W. Charon, Proc. Natl. Acad. Sci. U.S.A. 87, 4895 (1990)ADSCrossRefGoogle Scholar
  49. 49.
    C. Li, Md. A. Motaleb, M. Sal, S.F. Goldstein, N.W. Charon, J. Mol. Microbiol. Biotechnol. 2, 345 (2000)Google Scholar
  50. 50.
    L. Koens, E. Lauga, Phys. Biol. 11, 066008 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    W. Kan, C.W. Wolgemuth, Biophys. J. 93, 54 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    S. Jung, K. Mareck, L. Fauci, M. Shelley, Phys. Fluids 19, 103105 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    C. Dombrowski, W. Kan, A. Motaleb, N.W. Charon, R.E. Goldstein, C.W. Wolgemuth, Biophys. J. 96, 4409 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    H. Wada, R.R. Netz, Phys. Rev. Lett. 99, 108102 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    J. Yang, C. Wolgemuth, G. Huber, Phys. Rev. Lett. 102, 218102 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    H. Zhang, A. Mourran, M. Möller, Nano Lett. 17, 2010 (2017)ADSCrossRefGoogle Scholar
  57. 57.
    J. Gray, G.J. Hancock, J. Exp. Biol. 32, 802 (1955)Google Scholar
  58. 58.
    J. Lighthill, SIAM Rev. 18, 161 (1976)MathSciNetCrossRefGoogle Scholar
  59. 59.
    J.B. Keller, S.I. Rubinow, J. Fluid Mech. 75, 705 (1976)ADSCrossRefGoogle Scholar
  60. 60.
    R.E. Johnson, J. Fluid Mech. 99, 411 (1979)ADSCrossRefGoogle Scholar
  61. 61.
    L. Koens, E. Lauga, Phys. Fluids 28, 013101 (2016)ADSCrossRefGoogle Scholar
  62. 62.
    T.D. Montenegro-Johnson, L. Koens, E. Lauga, Soft Matter 13, 546 (2017)ADSCrossRefGoogle Scholar
  63. 63.
    G.I. Taylor, Low Reynolds number Flow, in National Committee for Fluid Mechanics Films (1967) available at https://doi.org/web.mit.edu/hml/ncfmf.html
  64. 64.
    S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications (Courier Corporation, Boston, 2005)Google Scholar
  65. 65.
    L. Koens, E. Lauga, Phys. Rev. E 93, 043125 (2016)ADSCrossRefGoogle Scholar
  66. 66.
    A. DeSimone, A. Tatone, Eur. Phys. J. E 35, 85 (2012)CrossRefGoogle Scholar
  67. 67.
    R.L. Hatton, H. Choset, Eur. Phys. J. ST 224, 3141 (2015)CrossRefGoogle Scholar
  68. 68.
    G. Cicconofri, A. DeSimone, Eur. Phys. J. E 39, 72 (2016)CrossRefGoogle Scholar
  69. 69.
    R.L. Hatton, T. Dear, H. Choset, IEEE Trans. Robot. 33, 523 (2017)CrossRefGoogle Scholar
  70. 70.
    S. Ramasamy, R.L. Hatton, Geometric gait optimization beyond two dimensions, in 2017 American Control Conference (IEEE, 2017) pp. 642--648Google Scholar
  71. 71.
    A. Berke, L. Turner, H. Berg, E. Lauga, Phys. Rev. Lett. 101, 038102 (2008)ADSCrossRefGoogle Scholar
  72. 72.
    E. Barta, N. Liron, SIAM J. Appl. Math. 48, 992 (1988)MathSciNetCrossRefGoogle Scholar
  73. 73.
    H. Shum, E. Gaffney, D. Smith, Proc. R. Soc. A: Math. Phys. Eng. Sci. 466, 1725 (2010)ADSCrossRefGoogle Scholar
  74. 74.
    J. Elgeti, U.B. Kaupp, G. Gompper, Biophys. J. 99, 1018 (2010)ADSCrossRefGoogle Scholar
  75. 75.
    H. Shum, E.A. Gaffney, Phys. Rev. E 92, 063016 (2015)ADSCrossRefGoogle Scholar
  76. 76.
    C. Brennen, H. Winet, Annu. Rev. Fluid Mech. 9, 339 (1977)ADSCrossRefGoogle Scholar
  77. 77.
    R. Cardinaels, H.A. Stone, Phys. Fluids 27, 072001 (2015)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Lyndon Koens
    • 1
    Email author
  • Hang Zhang
    • 2
  • Martin Moeller
    • 2
  • Ahmed Mourran
    • 2
  • Eric Lauga
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK
  2. 2.DWI-Leibniz Institute for Interactive Materials RWTH Aachen UniversityAachenGermany

Personalised recommendations