Validation study of using the free volume approximation to confined thermotropic and lyotropic liquid-crystalline fluids
- 30 Downloads
Abstract.
We examined the accuracy of the free volume approximation (FVA) to calculate the isotropic-nematic (IN) transition properties of thermotropic and lyotropic rods between two parallel hard walls. This approximation has been proposed to ease the calculation of the confined systems. It approximates the free energy of the confined particles with a bulk free energy. It predicts a special point for these two types of liquid crystals where the first-order IN transition changes to the second one by decreasing either the temperature, the density or the pore width. This prediction is in contradiction (in spite of some qualitative agreement) with those of the other publications where the authors note that the discontinuous transition terminates at the critical point when the walls are completely impenetrable.
Graphical abstract
Keywords
Soft Matter: Colloids and NanoparticlesReferences
- 1.F.C. Bawden, N.W. Pirie, J.D. Bernal, I. Fankuchen, Nature (London) 138, 1051 (1936)ADSCrossRefGoogle Scholar
- 2.P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edition (Clarendon Press, Oxford, 1993)Google Scholar
- 3.S. Chandrasekhar, Liquid Crystals, 2nd edition (Cambridge University Press, 1993)Google Scholar
- 4.F.M. van der Kooij, K. Kassapidou, H.N. Lekkerkerker, Nature 406, 868 (2000)ADSCrossRefGoogle Scholar
- 5.Y. Li, J.J.Y. Suen, E. Prince, E.M. Larin, A. Klinkova, H. Téhrien-Aubin, S. Zhu, B. Yang, A.S. Helmy, O.D. Lavrentovich, E. Kumacheva, Nat. Commun. 7, 12520 (2016)ADSCrossRefGoogle Scholar
- 6.S. Varga, A. Galindo, G. Jackson, J. Chem. Phys. 117, 10412 (2002)ADSCrossRefGoogle Scholar
- 7.M.R. Khadilkar, F.A. Escobedo, Soft Matter 12, 1506 (2016)ADSCrossRefGoogle Scholar
- 8.W. Song, I.A. Kinloch, A.H. Windle, Science 302, 1363 (2003)CrossRefGoogle Scholar
- 9.I. Drevenšek-Olenik, in Liquid Crystals with Nano and Microparticles (World Scientific, 2017) pp. 537--569Google Scholar
- 10.H.P. Xin, F. Liu, G.J. Ren, H.L. Zhao, J.Q. Yao, Opt. Commun. 389, 92 (2017)ADSCrossRefGoogle Scholar
- 11.S. Kumar, Chemistry of Discotic Liquid Crystals: From Monomers to Polymers (CRC Press, 2016)Google Scholar
- 12.I. Shiyanovskaya, K.D. Singer, R.J. Twieg, L. Sukhomlinova, V. Gettwert, Phys. Rev. E 65, 041715 (2002)ADSCrossRefGoogle Scholar
- 13.B.R. Kaafarani, Chem. Mater. 23, 378 (2010)CrossRefGoogle Scholar
- 14.R.J. Carlton, J.T. Hunter, D.S. Miller, R. Abbasi, P.C. Mushenheim, L.N. Tan, N. Abbott, Liq. Cryst. Rev. 1, 29 (2013)CrossRefGoogle Scholar
- 15.J.C. Everts, M.T.J.J.M. Punter, S. Samin, P.P.A.M. van der Schoot, R. van Roij, J. Chem. Phys. 144, 194901 (2016)ADSCrossRefGoogle Scholar
- 16.S.D. Peroukidis, A.G. Vanakaras, Soft Matter 9, 7419 (2013)ADSCrossRefGoogle Scholar
- 17.A. Kuijk, T. Troppenz, L. Filion, A. Imhof, R. Van Roij, M. Dijkstra, A. Van Blaaderen, Soft Matter 10, 6249 (2014)ADSCrossRefGoogle Scholar
- 18.K.R. Purdy, S. Varga, A. Galindo, G. Jackson, S. Fraden, Phys. Rev. Lett. 94, 057801 (2005)ADSCrossRefGoogle Scholar
- 19.M.A. Bates, G.R. Luckhurst, J. Chem. Phys. 110, 7087 (1999)ADSCrossRefGoogle Scholar
- 20.S. Dussi, M. Dijkstra, Nat. Commun. 7, 11175 (2016)ADSCrossRefGoogle Scholar
- 21.J.A.C. Veerman, D. Frenkel, Phys. Rev. A 45, 5632 (1992)ADSCrossRefGoogle Scholar
- 22.P.A. Santoro, A.R. Sampaio, H.L.F. da Luz, A.J. Palangana, Phys. Lett. A 353, 512 (2006)ADSCrossRefGoogle Scholar
- 23.G.P. Souza, D.A. Oliveira, D.D. Luders, N.M. Kimura, M. Simões, A.J. Palangana, J. Mol. Liq. 156, 184 (2010)CrossRefGoogle Scholar
- 24.D.A. Oliveira, D.D. Luders, G.P. Souza, N.M. Kimura, A.J. Palangana, Cryst. Res. Technol. 44, 1255 (2009)CrossRefGoogle Scholar
- 25.R. van Roij, M. Dijkstra, R. Evans, J. Chem. Phys. 113, 7689 (2000)ADSCrossRefGoogle Scholar
- 26.R. van Roij, M. Dijkstra, R. Evans, Europhys. Lett. 49, 350 (2000)ADSCrossRefGoogle Scholar
- 27.R. Aliabadi, M. Moradi, S. Varga, Phys. Rev. E 92, 032503 (2015)ADSCrossRefGoogle Scholar
- 28.M. Moradi, B.B. Ghotbabadi, R. Aliabadi, Int. J. Mod. Phys. C 28, 1750068 (2017)ADSCrossRefGoogle Scholar
- 29.R. Aliabadi, P. Gurin, E. Velasco, S. Varga, Phys. Rev. E 97, 012703 (2018)ADSCrossRefGoogle Scholar
- 30.J.H. Ahn, H.S. Kim, K.J. Lee, S. Jeon, S.J. Kang, Y. Sun, R.G. Nuzzo, J.A. Rogers, Science 314, 1754 (2006)ADSCrossRefGoogle Scholar
- 31.D. de las Heras, Y. Martínez-Ratón, E. Velasco, Phys. Chem. Chem. Phys. 12, 10831 (2010)CrossRefGoogle Scholar
- 32.K. Okano, Japanese J. Appl. Phys. 22, L343 (1983)ADSCrossRefGoogle Scholar
- 33.M. Ohgawara, T. Uchida, Japanese J. Appl. Phys. 20, L75 (1981)ADSCrossRefGoogle Scholar
- 34.A. Poniewierski, Phys. Rev. E 47, 3396 (1993)ADSCrossRefGoogle Scholar
- 35.R. Roth, R.H.H.G. van Roij, D. Andrienko, K.R. Mecke, S. Dietrich, Phys. Rev. Lett. 89, 088301 (2002)ADSCrossRefGoogle Scholar
- 36.Y. Mao, M.E. Cates, H.N.W. Lekkerkerker, Physica A: Stat. Mech. Appl. 222, 10 (1995)ADSCrossRefGoogle Scholar
- 37.A. Malijevsky, S. Varga, J. Phys.: Condens. Matter 22, 175002 (2010)ADSGoogle Scholar
- 38.P.I.C. Teixeira, T.J. Sluckin, J. Chem. Phys. 97, 1498 (1992)ADSCrossRefGoogle Scholar
- 39.M. Moradi, R.J. Wheatley, A. Avazpour, Phys. Rev. E 72, 061706 (2005)ADSCrossRefGoogle Scholar
- 40.D. de las Heras, E. Velasco, L. Mederos, Phys. Rev. E 74, 011709 (2006)ADSCrossRefGoogle Scholar
- 41.P. Sheng, Phys. Rev. Lett. 37, 1059 (1976)ADSCrossRefGoogle Scholar
- 42.P. Sheng, Phys. Rev. A 26, 1610 (1982)ADSCrossRefGoogle Scholar
- 43.A. Poniewierski, R. Holyst, Phys. Rev. Lett. 61, 2461 (1988)ADSCrossRefGoogle Scholar
- 44.Z. Pawlowska, G.F. Kventsel, T.J. Sluckin, Phys. Rev. A 36, 992 (1987)ADSCrossRefGoogle Scholar
- 45.A. Poniewierski, T.J. Sluckin, Liq. Cryst. 2, 281 (1987)CrossRefGoogle Scholar
- 46.M.M. Telo da Gama, P. Tarazona, M.P. Allen, R. Evans, Mol. Phys. 71, 801 (1990)ADSCrossRefGoogle Scholar
- 47.A. Matsuyama, Phase Separations in Suspensions of Rods between Parallel Walls, https://doi.org/www.researchgate.net (unpublished)
- 48.L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949)ADSCrossRefGoogle Scholar
- 49.A. Matsuyama, J. Chem. Phys. 132, 214902 (2010)ADSCrossRefGoogle Scholar
- 50.A. Matsuyama, T. Ueda, J. Chem. Phys. 136, 224904 (2012)ADSCrossRefGoogle Scholar
- 51.S. Shri, Liquid Crystals: Fundamentals (World Scientific, 2002)Google Scholar
- 52.A. Matsuyama, T. Kato, Eur. Phys. J. E 6, 15 (2001)CrossRefGoogle Scholar
- 53.K. Kočevar, A. Borštnik, I. Muševič, S. Zumer, Phys. Rev. Lett. 86, 5914 (2001)ADSCrossRefGoogle Scholar
- 54.G.J. Vroege, H.N.W. Lekkerkerker, Rep. Prog. Phys. 55, 1241 (1992)ADSCrossRefGoogle Scholar