Effect of particle shape on fluid statistics and particle dynamics in turbulent pipe flow

  • A. GuptaEmail author
  • H. J. H. Clercx
  • F. Toschi
Open Access
Regular Article
Part of the following topical collections:
  1. Flowing Matter, Problems and Applications


Anisotropic particles are present in many natural and industrial flows. Here we perform direct numerical simulation (DNS) of turbulent pipe flows with dispersed finite-size prolate spheroids simulated by means of the lattice Boltzmann method (LBM). We consider three different particle shapes: spheroidal (aspect ratio 2 and 3) and spherical. These three simulations are complemented with a reference simulation of a single-phase flow. For the sake of comparison, all simulations, laden or unladen have the same energy input. The flow geometry used is a straight pipe with length eight times its radius where the fluid is randomly seeded with 256 finite-size particles. The volume fraction of particles in the flow has been kept fixed at 0.48% by varying the major and minor axis of each particle such that their volume remains the same. We studied the effect of different particle shapes on particle dynamics and orientation, as well as on the flow modulation. We show that the local accumulation of spheres close to the wall decreases for spheroids with increasing aspect ratio. These spheroidal particles rotate slower than spheres near to the wall and tend to stay with their major axes aligned to the flow streamwise direction. Despite the lower rotation rates, a higher intermittency in the rotational rates was observed for spheroids and this increase at increasing the aspect ratio. The drag reduction observed for particles with higher aspect ratio have also been investigated using the one-dimensional energy and dissipation spectra. These results point to the relevance of particle shapes on their dynamics and their influence on the turbulent flow.

Graphical abstract


Topical issue: Flowing Matter, Problems and Applications 


  1. 1.
    J.J. Stickel, R.L. Powell, Annu. Rev. Fluid Mech. 37, 129 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    E. Molina, J.M. Fernandez-Sevilla, G. Acien Microalgae, mass culture methods, in Encyclopedia of Industrial Biotechnol.: Bioprocess, Bioseparation, and Cell Technology (John Wiley & Sons, 2010) pp. 1--24Google Scholar
  3. 3.
    F. Toschi, E. Bodenschatz, Annu. Rev. Fluid Mech. 41, 375 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Mehdi Niazi Ardekani, Léa Al Asmar, Francesco Picano, Luca Brandt, Int. J. Heat Fluid Flow 71, 189 (2018)CrossRefGoogle Scholar
  5. 5.
    S. Balachandar, J.K. Eaton, Annu. Rev. Fluid Mech. 42, 111 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    F. Picano, G. Sardina, C.M. Casciola, Phys. Fluids 21, 093305 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    H. Gao, H. Li, L.P. Wang, Comput. Math. Appl. 65, 194 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    F. Picano, W.P. Breugem, L. Brandt, J. Fluid Mech. 764, 463 (2015)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    A. TenCate, J.J. Derksen, L.M. Portela, H.E.A. Van Den Akker, J. Fluid Mech. 519, 233 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    P. Costa, F. Picano, L. Brandt, W.P. Breugem, Phys. Rev. Lett. 117, 134501 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    I. Lashgari, F. Picano, W.P. Breugem, L. Brandt, Phys. Rev. Lett. 113, 254505 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    A. Gupta, H.J.H. Clercx, F. Toschi, Commun. Comput. Phys. 23, 665 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Gupta, H.J.H. Clercx, F. Toschi, Eur. Phys. J. E 41, 34 (2018)CrossRefGoogle Scholar
  14. 14.
    G.A. Voth, A. Soldati, Annu. Rev. Fluid Mech. 49, 249 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    G.B. Jeffery, Proc. R. Soc. London A: Math. Phys. Eng. Sci. 102, 161 (1922)ADSCrossRefGoogle Scholar
  16. 16.
    H. Brenner, Chem. Eng. Sci. 18, 1 (1963)CrossRefGoogle Scholar
  17. 17.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. Mechanics of Fluids and Transport Processes (Noordhoff International Publishing, 1973)Google Scholar
  18. 18.
    M. Do-Quang, G. Amberg, G. Brethouwer, A.V. Johansson, Phys. Rev. E 89, 013006 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    N.M. Ardekani, P. Costa, W.P. Breugem, F. Picano, L. Brandt, J. Fluid Mech. 816, 43 (2017)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Eshghinejadfard, A. Abdelsamie, S.A. Hosseini, D. Thevenin, AIP Adv. 7, 095007 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    J.P. Matas, J.F. Morris, E. Guazzelli, Phys. Rev. Lett. 90, 014501 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    P. Patro, S.K. Dash, J. Fluids Eng. 136, 011301 (2013)CrossRefGoogle Scholar
  23. 23.
    J.D. Kulick, J.R. Fessler, J.K. Eaton, J. Fluid Mech. 277, 109 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    J.L. Lumley., Annu. Rev. Fluid Mech. 1, 367 (1969)ADSCrossRefGoogle Scholar
  25. 25.
    J.S. Paschkewitz, Y. Dubief, C.D. Dimitropoulos, E.S.G. Shaqfeh, P. Moin, J. Fluid Mech. 518, 281 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    J.J.J. Gillissen, B.J. Boersma, P.H. Mortensen, H.I. Andersson, J. Fluid Mech. 602, 209 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    P.K. Ptasinski, B.J. Boersma, F.T.M. Nieuwstadt, M.A. Hulsen, B.H.A.A. van Den Brule, J.C.R. Hunt, J. Fluid Mech. 490, 251 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Dubief, C.M. White, V.E. Terrapon, E.S.G. Shaqfeh, P. Moin, S.K. Lele, J. Fluid Mech. 514, 271 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    F.T.M. Nieuwstadt, J.M.J. den Toonder, Drag Reduction by Additives: A Review (Springer Vienna, 2001) pp. 269--316Google Scholar
  30. 30.
    L.H. Zhao, H.I. Andersson, J.J.J. Gillissen, Phys. Fluids 22, 081702 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    G. Bellani, M.L. Byron, A.G. Collignon, C.R. Meyer, E.A. Variano, J. Fluid Mech. 712, 41 (2012)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    S.L. Ceccio, Annu. Rev. Fluid Mech. 42, 183 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    R.A. Verschoof, R.C.A. van der Veen, C. Sun, D. Lohse, Phys. Rev. Lett. 117, 104502 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    J. Lin, W. Zhang, Z. Yu, J. Aerosol Sci. 35, 63 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    S.S. Dearing, M. Campolo, A. Capone, A. Soldati, Exp. Fluids 54, 1419 (2012)CrossRefGoogle Scholar
  36. 36.
    O. Bernstein, M. Shapiro, J. Aerosol Sci. 25, 113 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    H. Zhang, G. Ahmadi, F.G. Fan, J.B. McLaughlin, Int. J. Multiphase Flow 27, 971 (2001)CrossRefGoogle Scholar
  38. 38.
    P.H. Mortensen, H.I. Andersson, J.J.J. Gillissen, B.J. Boersma, Phys. Fluids 20, 093302 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    C. Marchiolli, M. Fantoni, A. Soldati, Phys. Fluids 22, 033301 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    N.R. Challabotla, L. Zhao, H.I. Andersson, J. Fluid Mech. 766, R2 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    N.R. Challabotla, Z. Lihao, H.I. Andersson, Phys. Fluids 27, 061703 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    L. Zhao, N.R. Challabotla, H.I. Andersson, E.A. Variano, Phys. Rev. Lett. 115, 244501 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    J. Lin, X. Shi, Z. Yu, Int. J. Multiphase Flow 29, 1355 (2003)CrossRefGoogle Scholar
  44. 44.
    S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Numerical Mathematics and Scientific Computation, 1st edition (Oxford University Press, 2001)Google Scholar
  45. 45.
    Z. Guo, C. Shu, Lattice Boltzmann Method and Its Applications in Engineering (World Scientific Publishing Company, 2013)Google Scholar
  46. 46.
    Y. Chen, Q. Cai, Z. Xia, M. Wang, S. Chen, Phys. Rev. E 88, 013303 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, New York, NY, USA, 1989)Google Scholar
  48. 48.
    L. Anhua, P.H. Shih, SIAM J. Optim. 13, 298 (2002)MathSciNetCrossRefGoogle Scholar
  49. 49.
    F. Lucci, A. Ferrante, S. Elghobashi, J. Fluid Mech. 650, 5 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    S.B. Pope, Turbulent Flows (Cambridge University Press, 2000)Google Scholar
  51. 51.
    C. Alessandro, M. Massimo, P.R. Giovanni, Int. J. Multiphase Flow 94, 189 (2017) (Supplement C)CrossRefGoogle Scholar
  52. 52.
    A. Eshghinejadfard, A. Abdelsamie, S.A. Hosseini, D. Thevenin, Int. J. Multiphase Flow 96, 161 (2017) (Supplement C)MathSciNetCrossRefGoogle Scholar
  53. 53.
    S. Parsa, E. Calzavarini, F. Toschi, G.A. Voth, Phys. Rev. Lett. 109, 134501 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    B. Arcen, A. Taniare, B. Oesteria, Int. J. Multiphase Flow 32, 1326 (2006)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Department of Applied PhysicsEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Istituto per le Applicazioni del CalcoloConsiglio Nazionale delle RicercheRomaItaly
  3. 3.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations