Advertisement

Modeling the camel-to-bell shape transition of the differential capacitance using mean-field theory and Monte Carlo simulations

  • Guilherme V. Bossa
  • Daniel L. Z. Caetano
  • Sidney J. de Carvalho
  • Klemen Bohinc
  • Sylvio MayEmail author
Regular Article
  • 59 Downloads

Abstract.

Mean-field electrostatics is used to calculate the differential capacitance of an electric double layer formed at a planar electrode in a symmetric 1:1 electrolyte. Assuming the electrolyte is also ion-size symmetric, we derive analytic expressions for the differential capacitance valid up to fourth order in the surface charge density or surface potential. Our mean-field model accounts exclusively for electrostatic interactions but includes an arbitrary non-ideality in the mixing entropy of the mobile ions. The ensuing criterion for the camel-to-bell shape transition of the differential capacitance is analyzed using commonly used mixing models (one based on a lattice gas and the other based on the Carnahan-Starling equation of state) and compared with Monte Carlo simulations. We observe a reasonable agreement between all our mean-field models and the simulation data for the camel-to-bell shape transition. The absolute value of the differential capacitance for an uncharged (or weakly charged) electrode is, however, not reproduced by our mean-field approaches, not even upon introducing a Stern layer with a thickness equal of the ion radius. We show that, if a Stern layer is introduced, its thickness dependence on the ion size is non-monotonic or, depending on the salt concentration, even inversely proportional.

Graphical abstract

Keywords

Soft Matter: Interfacial Phenomena and Nanostructured Surfaces 

References

  1. 1.
    J.N. Israelachvili, P.M. McGuiggan, Science 241, 795 (1988)ADSGoogle Scholar
  2. 2.
    R.J. Hunter, Foundations of Colloid Science (Oxford University Press, 2001)Google Scholar
  3. 3.
    D.F. Evans, H. Wennerström, The Colloidal Domain, Where Physics, Chemistry, and Biology Meet, second edition (VCH Publishers, 1994)Google Scholar
  4. 4.
    A.G. Volkov, Liquid Interfaces in Chemical, Biological and Pharmaceutical Applications (CRC Press, 2001)Google Scholar
  5. 5.
    B. Hou, W. Bu, G. Luo, P. Vanysek, M.L. Schlossman, J. Electrochem. Soc. 162, H890 (2015)Google Scholar
  6. 6.
    F. Mugele, B. Bera, A. Cavalli, I. Siretanu, A. Maestro, M. Duits, M. Cohen-Stuart, D. van den Ende, I. Stocker, I. Collins, Sci. Rep. 5, 10519 (2015)ADSGoogle Scholar
  7. 7.
    J. Hiller, J.D. Mendelsohn, M.F. Rubner, Nat. Mater. 1, 59 (2002)ADSGoogle Scholar
  8. 8.
    B. Jönsson, A. Nonat, C. Labbez, B. Cabane, H. Wennerström, Langmuir 21, 9211 (2005)Google Scholar
  9. 9.
    D. Ben-Yaakov, D. Andelman, R. Podgornik, D. Harries, Curr. Opin. Colloid Interface Sci. 16, 542 (2011)Google Scholar
  10. 10.
    H. Ohshima, Sci. Technol. Adv. Mater. 10, 063001 (2009)Google Scholar
  11. 11.
    L. Zubieta, R. Bonert, IEEE Trans. Ind. Appl. 36, 199 (2000)Google Scholar
  12. 12.
    J.R. Miller, A.F. Burke, Electrochem. Soc. Interface 17, 53 (2008)Google Scholar
  13. 13.
    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer Science & Business Media, 2013)Google Scholar
  14. 14.
    P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210 (2014)ADSGoogle Scholar
  15. 15.
    J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.-L. Taberna, Science 313, 1760 (2006)ADSGoogle Scholar
  16. 16.
    C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, P. Simon, J. Am. Chem. Soc. 130, 2730 (2008)Google Scholar
  17. 17.
    J. Vatamanu, Z. Hu, D. Bedrov, C. Perez, Y. Gogotsi, J. Phys. Chem. Lett. 4, 2829 (2013)Google Scholar
  18. 18.
    J. Huang, B.G. Sumpter, V. Meunier, Angew. Chem., Int. Ed. 47, 520 (2008)Google Scholar
  19. 19.
    S. Kondrat, A. Kornyshev, J. Phys.: Condens. Matter 23, 022201 (2010)ADSGoogle Scholar
  20. 20.
    R. Burt, K. Breitsprecher, B. Daffos, P.-L. Taberna, P. Simon, G. Birkett, X. Zhao, C. Holm, M. Salanne, J. Phys. Chem. Lett. 7, 4015 (2016)Google Scholar
  21. 21.
    K. Brousse, P. Huang, S. Pinaud, M. Respaud, B. Daffos, B. Chaudret, C. Lethien, P.-L. Taberna, P. Simon, J. Power Sources 328, 520 (2016)ADSGoogle Scholar
  22. 22.
    P. Simon, Y. Gogotsi, Philos. Trans. R. Soc. A 368, 3457 (2010)ADSGoogle Scholar
  23. 23.
    O.N. Kalugin, V.V. Chaban, V.V. Loskutov, O.V. Prezhdo, Nano Lett. 8, 2126 (2008)ADSGoogle Scholar
  24. 24.
    J. Vatamanu, L. Cao, O. Borodin, D. Bedrov, G.D. Smith, J. Phys. Chem. Lett. 2, 2267 (2011)Google Scholar
  25. 25.
    Y. He, R. Qiao, J. Vatamanu, O. Borodin, D. Bedrov, J. Huang, B.G. Sumpter, J. Phys. Chem. Lett. 7, 36 (2015)Google Scholar
  26. 26.
    J. Vatamanu, D. Bedrov, O. Borodin, Mol. Simul. 43, 838 (2017)Google Scholar
  27. 27.
    M.V. Fedorov, A.A. Kornyshev, Chem. Rev. 114, 2978 (2014)Google Scholar
  28. 28.
    F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 26, 2219 (2014)Google Scholar
  29. 29.
    C. Arbizzani, M. Biso, D. Cericola, M. Lazzari, F. Soavi, M. Mastragostino, J. Power Sources 185, 1575 (2008)ADSGoogle Scholar
  30. 30.
    D. Henderson, L. Blum, J. Chem. Phys. 69, 5441 (1978)ADSGoogle Scholar
  31. 31.
    D. Boda, W.R. Fawcett, D. Henderson, S. Sokołowski, J. Chem. Phys. 116, 7170 (2002)ADSGoogle Scholar
  32. 32.
    D. Henderson, S. Lamperski, Z. Jin, J. Wu, J. Phys. Chem. B 115, 12911 (2011)Google Scholar
  33. 33.
    D. Frydel, Y. Levin, J. Chem. Phys. 137, 164703 (2012)ADSGoogle Scholar
  34. 34.
    G. Valette, J. Electroanal. Chem. Interfacial Electrochem. 122, 285 (1981)Google Scholar
  35. 35.
    G. Valette, J. Electroanal. Chem. Interfacial Electrochem. 138, 37 (1982)Google Scholar
  36. 36.
    M.T. Alam, M.M. Islam, T. Okajima, T. Ohsaka, Electrochem. Commun. 9, 2370 (2007)Google Scholar
  37. 37.
    V. Lockett, M. Horne, R. Sedev, T. Rodopoulos, J. Ralston, Phys. Chem. Chem. Phys. 12, 12499 (2010)Google Scholar
  38. 38.
    G. Guoy, J. Phys. (Paris) 9, 457 (1910)Google Scholar
  39. 39.
    D.L. Chapman, Philos. Mag. 25, 475 (1913)Google Scholar
  40. 40.
    O. Stern, Z. Elektrochem. 30, 1014 (1924)Google Scholar
  41. 41.
    J. Bikerman, Philos. Mag. 33, 384 (1942)Google Scholar
  42. 42.
    V. Freise, Z. Elektrochem. 56, 822 (1952)Google Scholar
  43. 43.
    M. Eigen, E. Wicke, J. Phys. Chem. 58, 702 (1954)Google Scholar
  44. 44.
    I. Borukhov, D. Andelman, H. Orland, Phys. Rev. Lett. 79, 435 (1997)ADSGoogle Scholar
  45. 45.
    M.S. Kilic, M.Z. Bazant, A. Ajdari, Phys. Rev. E 75, 021502 (2007)ADSGoogle Scholar
  46. 46.
    A.A. Kornyshev, J. Phys. Chem. B 111, 5545 (2007)Google Scholar
  47. 47.
    L. Daniels, M. Scott, Z. Mišković, J. Chem. Phys. 146, 094101 (2017)ADSGoogle Scholar
  48. 48.
    M. Gorenstein, A. Kostyuk, Y.D. Krivenko, J. Phys. G: Nucl. Part. Phys. 25, L75 (1999)ADSGoogle Scholar
  49. 49.
    G. Minton, L. Lue, Mol. Phys. 114, 2477 (2016)ADSGoogle Scholar
  50. 50.
    N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969)ADSGoogle Scholar
  51. 51.
    T. Boublík, J. Chem. Phys. 53, 471 (1970)ADSGoogle Scholar
  52. 52.
    G. Mansoori, N. Carnahan, K. Starling, T. Leland Jr., J. Chem. Phys. 54, 1523 (1971)ADSGoogle Scholar
  53. 53.
    L. Lue, N. Zoeller, D. Blankschtein, Langmuir 15, 3726 (1999)Google Scholar
  54. 54.
    P. Biesheuvel, M. Van Soestbergen, J. Colloid Interface Sci. 316, 490 (2007)ADSGoogle Scholar
  55. 55.
    B. Giera, N. Henson, E.M. Kober, M.S. Shell, T.M. Squires, Langmuir 31, 3553 (2015)Google Scholar
  56. 56.
    N. Gavish, K. Promislow, Eur. J. Appl. Math. 27, 667 (2016)Google Scholar
  57. 57.
    A. Maggs, R. Podgornik, Soft Matter 12, 1219 (2016)ADSGoogle Scholar
  58. 58.
    J. López-García, J. Horno, C. Grosse, J. Colloid Interface Sci. 496, 531 (2017)ADSGoogle Scholar
  59. 59.
    D. Henderson, W. Silvestre-Alcantara, M. Kaja, S. Lamperski, J. Wu, L.B. Bhuiyan, J. Mol. Liq. 228, 236 (2017)Google Scholar
  60. 60.
    S. Lamperski, D. Henderson, Mol. Simul. 37, 264 (2011)Google Scholar
  61. 61.
    D. Jiang, D. Meng, J. Wu, Chem. Phys. Lett. 504, 153 (2011)ADSGoogle Scholar
  62. 62.
    M.Z. Bazant, M.S. Kilic, B.D. Storey, A. Ajdari, Adv. Colloid Interface Sci. 152, 48 (2009)Google Scholar
  63. 63.
    M. Chen, Z.A. Goodwin, G. Feng, A.A. Kornyshev, J. Electroanal. Chem. 819, 347 (2018)Google Scholar
  64. 64.
    Y. Nakayama, D. Andelman, J. Chem. Phys. 142, 044706 (2015)ADSGoogle Scholar
  65. 65.
    Y. Uematsu, R.R. Netz, D.J. Bonthuis, Langmuir 34, 9097 (2018)Google Scholar
  66. 66.
    S. Lamperski, C.W. Outhwaite, L.B. Bhuiyan, J. Phys. Chem. B 113, 8925 (2009)Google Scholar
  67. 67.
    M. Girotto, R.M. Malossi, A.P. dos Santos, Y. Levin, J. Chem. Phys. 148, 193829 (2018)ADSGoogle Scholar
  68. 68.
    K. Bohinc, G.V. Bossa, S. May, Adv. Colloid Interface Sci. 249, 220 (2017)Google Scholar
  69. 69.
    G.V. Bossa, B.K. Berntson, S. May, Phys. Rev. Lett. 120, 215502 (2018)ADSGoogle Scholar
  70. 70.
    T.L. Hill, An Introduction to Statistical Thermodynamics (Courier Corporation, 2012)Google Scholar
  71. 71.
    B. Jönsson, H. Wennerstroem, B. Halle, J. Phys. Chem. 84, 2179 (1980)Google Scholar
  72. 72.
    G. Torrie, J. Valleau, J. Chem. Phys. 73, 5807 (1980)ADSGoogle Scholar
  73. 73.
    A. Martín-Molina, M. Quesada-Pérez, R. Hidalgo-Álvarez, J. Phys. Chem. B 110, 1326 (2006)Google Scholar
  74. 74.
    S. Lamperski, A. Zydor, Electrochim. Acta 52, 2429 (2007)Google Scholar
  75. 75.
    D.L.Z. Caetano, G.V. Bossa, V.M. de Oliveira, M.A. Brown, S.J. de Carvalho, S. May, Phys. Chem. Chem. Phys. 18, 27796 (2016)Google Scholar
  76. 76.
    D.L.Z. Caetano, G.V. Bossa, V.M. de Oliveira, M.A. Brown, S.J. de Carvalho, S. May, Phys. Chem. Chem. Phys. 19, 23971 (2017)Google Scholar
  77. 77.
    M.A. Brown, G.V. Bossa, S. May, Langmuir 31, 11477 (2015)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guilherme V. Bossa
    • 1
    • 2
  • Daniel L. Z. Caetano
    • 2
  • Sidney J. de Carvalho
    • 2
  • Klemen Bohinc
    • 3
  • Sylvio May
    • 1
    Email author
  1. 1.Department of PhysicsNorth Dakota State UniversityFargoUSA
  2. 2.Department of PhysicsSão Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact SciencesSão José do Rio PretoBrazil
  3. 3.Faculty of Health SciencesUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations