Advertisement

Structural aspects of human lactoferrin in the iron-binding process studied by molecular dynamics and small-angle neutron scattering

  • Lilia Anghel
  • Aurel Radulescu
  • Raul Victor ErhanEmail author
Regular Article

Abstract.

Lactoferrin is a non-heme protein known for its ability to bind tightly Fe(III) ions in various physiological environments. Due to this feature lactoferrin plays an important role in the processes of iron regulation at the cellular level preventing the body from damages produced by high levels of free iron ions. The X-ray crystal structure of human lactoferrin shows that the iron-binding process leads to conformational changes within the protein structure. The present study was addressed to conformation stability of human lactoferrin in solution. Using molecular dynamics simulations, it was shown that Arg121 is the key amino acid in the stabilization of the Fe(III) ion in the N-lobe of human lactoferrin. The small-angle neutron scattering method allowed us to detect the structural differences between the open and closed conformation of human lactoferrin in solution. Our results indicate that the radius of gyration of apolactoferrin appears to be smaller than that of the hololactoferrin, \(R_{g}=24.16(\pm 0.707)\) Å and \(R_{g}= 26.20(\pm 1.191)\) Å, respectively. The low-resolution three-dimensional models computed for both forms of human lactoferrin in solution also show visible differences, both having a more compact conformation compared to the high-resolution structure.

Graphical abstract

Keywords

Soft Matter: Self-organisation and Supramolecular Assemblies 

References

  1. 1.
    Y. Lu, N. Yeung, N. Sieracki, N.M. Marshall, Nature 460, 855 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    E.N. Baker et al., Cell. Mol. Life Sci. 62, 2531 (2005)CrossRefGoogle Scholar
  3. 3.
    C. Sill, BMC Biophys. 9, 1 (2016)CrossRefGoogle Scholar
  4. 4.
    L. Anghel, Chem. J. Mold. 9, 99 (2014)CrossRefGoogle Scholar
  5. 5.
    K. Mizutani, M. Toyoda, B. Mikami, Biochim. Biophys. Acta 1820, 203 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Teraguchi et al., Appl. Environ. Microbiol. 61, 501 (1995)Google Scholar
  7. 7.
    C. Guillén et al., Ann. Rheum Dis. 57, 309 (1998)CrossRefGoogle Scholar
  8. 8.
    M. Spadaro et al., FASEB J. 22, 2747 (2008)CrossRefGoogle Scholar
  9. 9.
    M. Iigo et al., Biochimie. 91, 86 (2009)CrossRefGoogle Scholar
  10. 10.
    H.M. Habib et al., Food Chem. 141, 148 (2013)CrossRefGoogle Scholar
  11. 11.
    H.R. Faber et al., Biochemistry 35, 14473 (1996)CrossRefGoogle Scholar
  12. 12.
    T.E. Adams et al., J. Biol. Chem. 278, 6027 (2003)CrossRefGoogle Scholar
  13. 13.
    N.A. Peterson et al., Biochemistry 41, 14167 (2002)CrossRefGoogle Scholar
  14. 14.
    L. Anghel, Chem. J. Mold. 10, 70 (2015)Google Scholar
  15. 15.
    H.J.C. Berendsen et al., Comput. Phys. Commun. 91, 43 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    S. Pronk et al., Bioinformatics 29, 845 (2013)CrossRefGoogle Scholar
  17. 17.
    N. Guex, M.C. Peitsch, Electrophoresis 18, 2714 (1997)CrossRefGoogle Scholar
  18. 18.
    W.L. Jorgensen et al., J. Am. Chem. Soc. 7863, 11225 (1996)CrossRefGoogle Scholar
  19. 19.
    P.E. Mason et al., J. Am. Chem. Soc. 128, 15136 (2006)CrossRefGoogle Scholar
  20. 20.
    W. Lin et al., Inorg. Chem. 33, 884 (1994)CrossRefGoogle Scholar
  21. 21.
    W. Humphrey et al., J. Mol. Graph. 14, 33 (1996)CrossRefGoogle Scholar
  22. 22.
    A. Radulescu et al., J. Vis. Exp. 118, 54639 (2016)Google Scholar
  23. 23.
    M.V. Petoukhov et al., J. Appl. Crystallogr. 45, 342 (2012)CrossRefGoogle Scholar
  24. 24.
    R. Pakdaman, M. Petitjean, J. El Hage Chahine, Eur. J. Biochem. 254, 144 (1998)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018
Corrected Publication November 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Lilia Anghel
    • 1
  • Aurel Radulescu
    • 2
  • Raul Victor Erhan
    • 3
    • 4
    Email author
  1. 1.Institute of Chemistry (ICh)ChisinauRepublic of Moldova
  2. 2.Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ)Forschungszentrum Jülich GmbHGarchingGermany
  3. 3.Neutron materials characterization (NØYTRON)Institute for Energy Technology (IFE)KjellerNorway
  4. 4.Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH)Bucharest - MagureleRomania

Personalised recommendations