Advertisement

Micro-wires self-assembled and 3D-connected with the help of a nematic liquid crystal

  • H. Agha
  • J. -B. Fleury
  • Y. GalerneEmail author
Regular Article

Abstract

We discuss a method for producing automatic 3D connections at right places between substrates in front of one another. The idea is based on the materialization of disclination lines working as templates. The lines are first created in the nematic liquid crystal (5CB) at the very place where microwires have to be synthesized. Due to their anchoring properties, colloids dispersed into the nematic phase produce orientational distortions around them. These distortions, which may be considered as due to topological charges, result in a nematic force, able to attract the colloids towards the disclinations. Ultimately, the particles get trapped onto them, forming micro- or nano-necklaces. Before being introduced in the nematic phase, the colloids are covered with an adhering and conducting polypyrrole film directly synthesized at the surface of the particles (heterogeneous polymerization). In this manner, the particles become conductive so that we may finally perform an electropolymerization of pyrrole monomers solved in 5CB, and definitely stick the whole necklace. The electric connection thus synthesized is analyzed by AFM, and its strength is checked by means of hydrodynamic tests. This wiring method could allow Moore’s law to overcome the limitations that arise when down-sizing the electronic circuits to nanometer scale.

Keywords

Soft Matter: Liquid crystals 

Supplementary material

Supplementary material, approximately 4.86 MB.

References

  1. 1.
  2. 2.
    A. Huffman, J. Lannon, M. Lueck, C. Gregory, D. Temple, J. Instrum. 4, 3006 (2009).CrossRefGoogle Scholar
  3. 3.
    B.-H. Kwak, M.-H. Jeong, J.-W. Kim, B. Lee, H.-J. Lee, Y.-B. Park, MicroElectr. Eng. 89, 65 (2012).CrossRefGoogle Scholar
  4. 4.
    P. Poulin, D.A. Weitz, Phys. Rev. E 57, 626 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    J.-Ch. Loudet, Ph. Barois, Ph. Poulin, Nature 407, 611 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    I.I. Smalyukh, S. Chernushuk, B.I. Lev, A.B. Nych, U. Ognysta, V.G. Nazarenko, O.D. Lavrentovich, Phys. Rev. Lett. 93, 117801 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, S. Zumer, Science 313, 954 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    M. Skarabot, M. Ravnik, S. Zumer, U. Tkalec, I. Poberaj, D. Babic, I. Musevic, Phys. Rev. E 77, 061706 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    F. Castles, F.V. Day, S.M. Morris, D.-H. Ko, D.J. Gardiner, M.M. Qasim, S. Nosheen, P.J.W. Hands, S.S. Choi, R.H. Friend, H.J. Coles, Nat. Mater 11, 599 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    M. Ravnik, M. Skarabot, S. Zumer, U. Tkalec, I. Poberaj, D. Babic, N. Osterman, I. Musevic, Phys. Rev. Lett. 99, 247801 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    U. Tkalec, M. Ravnik, S. Copar, S. Zumer, I. Musevic, Science 333, 62 (2011).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    J.-B. Fleury, D. Pires, Y. Galerne, Phys. Rev. Lett. 103, 267801 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    D. Pires, J.-B. Fleury, Y. Galerne, Phys. Rev. Lett. 98, 247801 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    H. Agha, J.-B. Fleury, Y. Galerne, to be published.Google Scholar
  15. 15.
    P. Hubert, H. Dreyfus, D. Guillon, J. Phys. II 5, 1371 (1995).CrossRefGoogle Scholar
  16. 16.
    J.L. Janning, Appl. Phys. Lett. 21, 173 (1972).ADSCrossRefGoogle Scholar
  17. 17.
    W. Urbach, M. Boix, E. Guyon, Appl. Phys. Lett. 25, 479 (1974).ADSCrossRefGoogle Scholar
  18. 18.
    M. Schadt, K. Schmitt, V. Kozinkov, V. Chigrinov, Jpn. J. Appl. Phys. 31, 2155 (1992).ADSCrossRefGoogle Scholar
  19. 19.
    M. Ruetschi, P. Grutter, J. Funfschilling, H.-J. Guntherodt, Science 265, 512 (1994).ADSCrossRefGoogle Scholar
  20. 20.
    J.-H. Kim, M. Yoneya, H. Yokoyama, Nature 420, 159 (2002).ADSCrossRefGoogle Scholar
  21. 21.
    P.-G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1993).Google Scholar
  22. 22.
    A.H. Cottrell, B.A. Bilby, Proc. Phys. Soc. London, Sect. A 62, 49 (1949).ADSCrossRefGoogle Scholar
  23. 23.
    D. Voloschenko, O. Pishnyak, S.V. Shiyanovskii, O.D. Lavrentovich, Phys. Rev. E 65, 060701 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    T.C. Lubensky, D. Pettey, N. Currier, H. Stark, Phys. Rev. E 57, 610 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    A. Bogi, S. Faetti, Liq. Cryst. 28, 729 (2001).CrossRefGoogle Scholar
  26. 26.
    I. Dozov, Ph. Martinot-Lagarde, Phys. Rev. E 58, 7442 (1998).ADSCrossRefGoogle Scholar
  27. 27.
    D. Pires, Y. Galerne, J. Appl. Phys. 100, 124916 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    I.I. Smalyukh, A.N. Kuzmin, A.V. Kachynski, P.N. Prasad, O.D. Lavrentovich, Appl. Phys. Lett. 86, 021913 (2005).ADSCrossRefGoogle Scholar
  29. 29.
    G.P. Bryan-Brown, E.L. Wood, I.C. Sage, Nature 399, 338 (1999).ADSCrossRefGoogle Scholar
  30. 30.
    O. Ou Ramdane, Ph. Auroy, S. Forget, E. Raspaud, Ph. Martinot-Lagarde, I. Dozov, Phys. Rev. Lett. 84, 3871 (2000).ADSCrossRefGoogle Scholar
  31. 31.
    D. Pires, Y. Galerne, Appl. Phys. Lett. 89, 144110 (2006).ADSCrossRefGoogle Scholar
  32. 32.
    H. Agha, J.-B. Fleury, Y. Galerne, to be published. .Google Scholar
  33. 33.
    S. Sadki, P. Schottland, N. Brodie, G. Sabouraud, Chem. Soc. Rev. 29, 283 (2000).CrossRefGoogle Scholar
  34. 34.
    B.L. Fletcher et al., J. Appl. Phys. 105, 124312 (2009).ADSCrossRefGoogle Scholar
  35. 35.
    Supplementary video. The video was realized on using a high-performance digital CCD camera (Princeton Instruments, Inc.). The images were taken during the flow at a rate of 4 frames per second. The velocity, ∼ 25 μm s−1 was determined by measuring the displacement of the wire as a function of time during the flow. The scale is the same as in fig. fig:11.Google Scholar
  36. 36.
    E.Y. Harper, I.D. Chang, Phys. Fluids 10, 83 (1967).ADSzbMATHCrossRefGoogle Scholar
  37. 37.
    J. Jadzyn, R. Dabrowski, T. Lech, G. Czechowski, J. Chem. Eng. Data 46, 110 (2001).CrossRefGoogle Scholar
  38. 38.
    M.K. Beyer, H. Clausen-Schaumann, Chem. Rev. 105, 2921 (2005).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut de Physique et Chimie des Matériaux de StrasbourgUMR 7504 (CNRS-Université de Strasbourg)StrasbourgFrance

Personalised recommendations