Helium nanodroplet assisted synthesis of bimetallic Ag@Au nanoparticles with tunable localized surface plasmon resonance

  • Florian LacknerEmail author
  • Alexander Schiffmann
  • Maximillian Lasserus
  • Roman Messner
  • Martin Schnedlitz
  • Harald Fitzek
  • Peter Pölt
  • Daniel Knez
  • Gerald Kothleitner
  • Wolfgang E. Ernst
Open Access
Regular Article
Part of the following topical collections:
  1. Topical Issue: Dynamics of Systems on the Nanoscale (2018)


Nanoparticles with tunable localized surface plasmon resonance have been prepared by synthesis in helium nanodroplets. Subsequent surface deposition allows for the formation of substrates which can be employed for surface-enhanced Raman spectroscopy (SERS). The assembly of Ag@Au core@shell clusters of about 5 nm diameter in helium droplets with different Ag:Au ratio allows to tune the surface plasmon resonance between the plain Ag resonance at 447 nm and the Au resonance at 555 nm. For the fabricated substrates only a single plasmon resonance is observed in the UV/vis absorption spectra. The prepared nanostructures have been functionalized with 4-methylbenzenethiol (4-MBT) molecules and SERS spectra have been recorded. The results demonstrate the potential of the helium droplet synthesis approach, opening up a new route to the formation of tailored plasmonic nanoparticles and functional nanostructures.

Graphical abstract


Clusters and Nanostructures 



Open access funding provided by Austrian Science Fund (FWF).


  1. 1.
    M.B. Gawande, A. Goswami, T. Asefa, H. Guo, A.V. Biradar, D.-L. Peng, R. Zboril, R.S. Varma, Chem. Soc. Rev. 44, 7540 (2015)CrossRefGoogle Scholar
  2. 2.
    H.A. Atwater, A. Polman, Nat. Mater. 9, 205 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, R.P. Van Duyne, Mater. Today 15, 16 (2012)CrossRefGoogle Scholar
  4. 4.
    K. Kneipp, M. Moskovits, H. Kneipp, Phys. Today 60, 40 (2007)CrossRefGoogle Scholar
  5. 5.
    P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Nano Today 2, 18 (2007)CrossRefGoogle Scholar
  6. 6.
    M.B. Cortie, A.M. McDonagh, Chem. Rev. 111, 3713 (2011)CrossRefGoogle Scholar
  7. 7.
    J.P. Toennies, A.F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004)CrossRefGoogle Scholar
  8. 8.
    C. Callegari, W.E. Ernst, in Handbook of High-Resolution Spectroscopy, Chapter: Helium Droplets as Nanocryostats for Molecular Spectroscopy-from the Vacuum Ultraviolet to the Microwave Regime, edited by M. Quack, F. Merkt (John Wiley & Sons, Hoboken, NJ, 2011), pp. 1551–1594Google Scholar
  9. 9.
    M. Schnedlitz, M. Lasserus, R. Meyer, D. Knez, F. Hofer, W.E. Ernst, A.W. Hauser, Chem. Mater. 30, 1113 (2018)CrossRefGoogle Scholar
  10. 10.
    M.G. Blaber, M.D. Arnold, M.J. Ford, J. Phys.: Condens. Matter 22, 143201 (2010)ADSGoogle Scholar
  11. 11.
    Y. Yang, J. Shi, G. Kawamura, M. Nogami, Scr. Mater. 58, 862 (2008)CrossRefGoogle Scholar
  12. 12.
    K. Mallik, M. Mandal, N. Pradhan, T. Pal, Nano Lett. 1, 319 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    J.H. Hodak, A. Henglein, M. Giersig, G.V. Hartland, J. Phys. Chem. B 104, 11708 (2000)CrossRefGoogle Scholar
  14. 14.
    A.K. Samal, L. Polavarapu, S. Rodal-Cedeira, L.M. Liz-Marzán, J. Pérez-Juste, I. Pastoriza-Santos, Langmuir 29, 15076 (2013)CrossRefGoogle Scholar
  15. 15.
    S.K. Cha, J.H. Mun, T. Chang, S.Y. Kim, J.Y. Kim, H.M. Jin, J.Y. Lee, J. Shin, K.H. Kim, S.O. Kim, ACS Nano 9, 5536 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Chen, H. Wu, Z. Li, P. Wang, L. Yang, Y. Fang, Plasmonics 7, 509 (2012)CrossRefGoogle Scholar
  17. 17.
    M.S. Shore, J. Wang, A.C. Johnston-Peck, A.L. Oldenburg, J.B. Tracy, Small 7, 230 (2011)CrossRefGoogle Scholar
  18. 18.
    M.P. Mallin, C.J. Murphy, Nano Lett. 2, 1235 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    B. Baruah, M. Kiambuthi, RSC Adv. 4, 64860 (2014)CrossRefGoogle Scholar
  20. 20.
    G. Haberfehlner, P. Thaler, D. Knez, A. Volk, F. Hofer, W.E. Ernst, G. Kothleitner, Nat. Commun. 6, 8779 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    M. Lasserus, M. Schnedlitz, D. Knez, R. Messner, A. Schiffmann, F. Lackner, A.W. Hauser, F. Hofer, W.E. Ernst, Nanoscale 10, 2017 (2018)CrossRefGoogle Scholar
  22. 22.
    P. Thaler, A. Volk, M. Ratschek, M. Koch, W.E. Ernst, J. Chem. Phys. 140, 044326 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    R. Fernández-Perea, L.F. Gómez, C. Cabrillo, M. Pi, A.O. Mitrushchenkov, A.F. Vilesov, M.P. de Lara-Castells, J. Phys. Chem. C 121, 22248 (2017)CrossRefGoogle Scholar
  24. 24.
    E. Loginov, L.F. Gomez, A.F. Vilesov, J. Phys. Chem. A 115, 7199 (2011)CrossRefGoogle Scholar
  25. 25.
    A. Volk, P. Thaler, M. Koch, E. Fisslthaler, W. Grogger, W.E. Ernst, J. Chem. Phys. 138, 214312 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    A. Boatwright, C. Feng, D. Spence, E. Latimer, C. Binns, A.M. Ellis, S. Yang, Faraday Discuss. 162, 113 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    S.B. Emery, K.B. Rider, B.K. Little, C.M. Lindsay, J. Phys. Chem. C 117, 2358 (2013)CrossRefGoogle Scholar
  28. 28.
    E. Latimer, D. Spence, C. Feng, A. Boatwright, A.M. Ellis, S. Yang, Nano Lett. 14, 2902 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    P. Thaler, A. Volk, D. Knez, F. Lackner, G. Haberfehlner, J. Steurer, M. Schnedlitz, W.E. Ernst, J. Chem. Phys. 143, 134201 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    L.F. Gomez, E. Loginov, R. Sliter, A.F. Vilesov, J. Chem. Phys. 135, 154201 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    P. Thaler, A. Volk, F. Lackner, J. Steurer, D. Knez, W. Grogger, F. Hofer, W.E. Ernst, Phys. Rev. B 90, 155442 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    C. Kittel, Introduction to Solid State Physics (Wiley, Hoboken, NJ, 2005)Google Scholar
  33. 33.
    E.C. Le Ru, E. Blackie, M. Meyer, P.G. Etchegoin, J. Phys. Chem. C 111, 13794 (2007)CrossRefGoogle Scholar
  34. 34.
    P.H.C. Camargo, L. Au, M. Rycenga, W. Li, Y. Xia, Chem. Phys. Lett. 484, 304 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    T. Walther, C.J. Humphreys, J. Cryst. Growth 197, 113 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    H. Hövel, S. Fritz, A. Hilger, U. Kreibig, M. Vollmer, Phys. Rev. B 48, 18178 (1993)ADSCrossRefGoogle Scholar
  37. 37.
    A. Kuzma, M. Weis, M. Daricek, J. Uhrik, F. Horinek, M. Donoval, F. Uherek, D. Donoval, J. Appl. Phys. 115, 053517 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    M. Moskovits, I. Srnová-Šloufová, B. Vlčková, J. Chem. Phys. 116, 10435 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    W.-T. Wu, C.-H. Chen, C.-Y. Chiang, L.K. Chau, Sensors 18, 1759 (2018)CrossRefGoogle Scholar
  40. 40.
    K.P. Jain, M.A. El-Sayed, Chem. Phys. Lett. 487, 153 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    J.A. Scholl, A.L. Koh, J.A. Dionne, Nature 483, 421 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    A. Schiffmann, D. Knez, F. Lackner, M. Lasserus, R. Messner, M. Schnedlitz, G. Kothleitner, F. Hofer, W.E. Ernst, J. Appl. Phys. 125, 023104 (2019)ADSCrossRefGoogle Scholar
  43. 43.
    T.P. Martin, Phys. Rep. 273, 199 (1996)ADSCrossRefGoogle Scholar
  44. 44.
    V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza- Santos, A.M. Funston, C. Novo, P. Mulvaney, L.M. Liz-Marzán, F.J.G. de Abajo, Chem. Soc. Rev. 37, 1792 (2008)CrossRefGoogle Scholar
  45. 45.
    M. Pellarin, M. Broyer, J. Lermé, M.-A. Lebeault, J. Ramade, E. Cottancin, Phys. Chem. Chem. Phys. 18, 4121 (2016)CrossRefGoogle Scholar
  46. 46.
    X. Song, G. Wang, Y. Ma, S. Jiang, W. Yue, S. Xu, C. Wang, Chem. Phys. Lett. 645, 164 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    O. Endo, M. Nakamura, K. Amemiya, J. Electron. Spectrosc. Relat. Phenom. 187, 72 (2013)CrossRefGoogle Scholar
  48. 48.
    A. Ulman, Chem. Rev. 96, 1533 (1996)CrossRefGoogle Scholar
  49. 49.
    K. Ikeda, S. Suzuki, K. Uosaki, J. Am. Chem. Soc. 135, 17387 (2013)CrossRefGoogle Scholar
  50. 50.
    S.K. Ghosh, S. Nath, S. Kundu, E. Kunio, T. Pal, J. Phys. Chem. B 108, 13963 (2004)CrossRefGoogle Scholar
  51. 51.
    F.S. Ameer, Y. Zhou, S. Zou, D. Zhang, J. Phys. Chem. C 118, 22234 (2014)CrossRefGoogle Scholar
  52. 52.
    P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Laser Photonics Rev. 4, 795 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, F. Bisio, ACS Nano 7, 5834 (2013)CrossRefGoogle Scholar
  54. 54.
    Q. Wu, C.J. Ridge, S. Zhao, D. Zakharov, J. Cen, X. Tong, E. Connors, D. Su, E.A. Stach, C.M. Lindsay, A. Orlov, J. Phys. Chem. Lett. 7, 2910 (2016)CrossRefGoogle Scholar
  55. 55.
    S. Linic, P. Christopher, D.B. Ingram, Nat. Mater. 10, 911 (2011)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Institute of Experimental Physics, Graz University of TechnologyGrazAustria
  2. 2.Institute of Electron Microscopy and Nanoanalysis & Graz Centre for Electron Microscopy, Graz University of TechnologyGrazAustria

Personalised recommendations