Advertisement

Asymptotic behavior of photoionization cross section in a central field. Ionization of the p states

  • E. G. DrukarevEmail author
  • A. I. Mikhailov
Regular Article
  • 1 Downloads

Abstract

We continue our studies of the high energy nonrelativistic asymptotics for the photoionization cross section of the systems bound by a central field V(r). We consider the bound states with the orbital momentum 𝓁 = 1. We show, that as well as for the s states the asymptotics can be obtained without solving of the wave equations for the bound and outgoing electrons. The asymptotics of the cross sections is expressed in terms of the asymptotics of the Fourier transform V(p) of the potential and its derivative V’(p) by employing the Lippmann–Schwinger equation. The shape of the energy dependence of the cross sections is determined by the analytical properties of the potential V(r). The cross sections exhibit power drop with the increase of the photon energy for the potentials V(r) which have singularities on the real axis. They experience exponential drop if V(r) has poles in the complex plane. We trace the energy dependence of the ratios of the photoionization cross sections for s and p electrons from the states with the same principle quantum number. We apply the results to the physics of fullerenes.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    E.G. Drukarev, A.I. Mikhailov, Eur. Phys. J. D. 71, 207 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    E.G. Drukarev, A.I. Mikhailov, Phys. Lett. A 382, 499 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    E.G. Drukarev, A.I. Mikhailov, J. Exp. Theor. Phys. 126, 718 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    L.D. Landau, E.M. Lifshits, Quantum Mechanics, Nonrelativistic Theory (Pergamon, NY, 1977)Google Scholar
  5. 5.
    H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin-Heiderberg, 1957)Google Scholar
  6. 6.
    E.G. Drukarev, A.I. Mikhailov, High-Energy Atomic Physics (Springer International Publishing, Switzerland, 2016)Google Scholar
  7. 7.
    J.M. Ugalde, C. Sarasola, X. Lopez, Phys. Rev. A 56, 1642 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    B.W. Ninham, M. Boström, C. Persson, I. Brevik, S.Y. Buhmann, Bo E. Sernelius, Eur. Phys. J. D 68, 328 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    T. Ericson, W. Weise, Pions and Nuclei (Clarendon Press, Oxford, 1988)Google Scholar
  10. 10.
    N.B. Avdonina, E.G. Drukarev, R.H. Pratt, Phys. Rev. A 65, 052705 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    J. McEnnan, L. Kissel, R.H. Pratt, Phys. Rev. A 13, 352 (1976)Google Scholar
  12. 12.
    S.D. Oh, J. McEnnan, R.H. Pratt, Phys. Rev. A 14, 1428 (1976)ADSCrossRefGoogle Scholar
  13. 13.
    B. Ratra, Phys. Rev. D 40, 1428 (1989)MathSciNetCrossRefGoogle Scholar
  14. 14.
    K. Heyde, Ideas and Concepts in Nuclear Physics (Institute of Physics Publishing, Bristol and Philadelphia, 1999)Google Scholar
  15. 15.
    A.S. Baltenkov, S.T. Manson, A.Z. Msezane, J. Phys. B 48, 185103 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    V.B. Berestetskii, E.M. Lifshits, L.P. Pitaevskii, Quantum Electrodynamics (Pergamon Press, NY, 1982)Google Scholar
  17. 17.
    S.M. Blinder, Chem. Phys. Lett. 40, 3939 (1989)Google Scholar
  18. 18.
    M.Ya Amusia, A.S. Baltenkov, B.G. Krakov, Phys. Lett. A 243, 99 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    M. Brack, Rev. Mod. Phys. 65, 677 (1993)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Research Center “Kurchatov Institute” B.P. Konstantinov Petersburg Nuclear Physics Institute GatchinaSt. PetersburgRussia

Personalised recommendations