Advertisement

Resonant excitations of a Bose Einstein condensate in an optical lattice

  • Citlali Cabrera-Gutiérrez
  • Eric Michon
  • Maxime Arnal
  • Gabriel Chatelain
  • Vincent Brunaud
  • Tomasz Kawalec
  • Juliette Billy
  • David Guéry-OdelinEmail author
Regular Article

Abstract

We investigate experimentally a Bose Einstein condensate placed in a 1D optical lattice whose phase or amplitude is modulated in a frequency range resonant with the first bands of the band structure. More precisely, we study the effect of the strength of a weak extra external confinement superimposed to the lattice on the 1 and 2-phonon transitions. We identify lines immune or very sensitive to the external confinement despite many orders of magnitude of difference in strength compared to the lattice. We interpret those features and present 1D numerical simulations including atom-atom interactions consistent with the experimental observations. Using the band mapping technique, we also get a direct access to the populations that have undergone n-phonon transitions for each modulation frequency including for non-zero quasi-momentum.

Graphical abstract

Keywords

Cold Matter and Quantum Gas 

References

  1. 1.
    N. Gemelke, E. Sarajlic, Y. Bidel, S. Hong, S. Chu, Phys. Rev. Lett. 95, 170404 (2005).ADSGoogle Scholar
  2. 2.
    H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, E. Arimondo, Phys. Rev. Lett. 99, 220403 (2007).ADSGoogle Scholar
  3. 3.
    E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic, M.K. Oberthaler, Phys. Rev. Lett. 100 (2008) 190405.ADSGoogle Scholar
  4. 4.
    E. Michon, C. Cabrera-Gutiérrez, A. Fortun, M. Berger, M. Arnal, V. Brunaud, J. Billy, C. Petitjean, P. Schlagheck, D. Guéry-Odelin, New J. Phys. 20, 053035 (2018).ADSGoogle Scholar
  5. 5.
    A. Eckardt, Rev. Mod. Phys. 89, 011004 (2017).ADSMathSciNetGoogle Scholar
  6. 6.
    T. Stöferle, H. Moritz, C. Schori, M. Köhl, T. Esslinger, Phys. Rev. Lett. 92, 130403 (2004).ADSGoogle Scholar
  7. 7.
    C. Schori, T. Stöferle, H. Moritz, M. Köhl, T. Esslinger, Phys. Rev. Lett. 93, 240402 (2004).ADSGoogle Scholar
  8. 8.
    C. Kollath, A. Iucci, T. Giamarchi, W. Hofstetter, U. Schollwöck, Phys. Rev. Lett. 97, 050402 (2006).ADSGoogle Scholar
  9. 9.
    N. Fabbri, S.D. Huber, D. Clément, L. Fallani, C. Fort, M. Inguscio, E. Altman, Phys. Rev. Lett. 109, 055301 (2012).ADSGoogle Scholar
  10. 10.
    M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauβ, C. Gross, E. Demler, S. Kuhr, I. Bloch, Nature 487, 454 (2012).ADSGoogle Scholar
  11. 11.
    A. Alberti, V.V. Ivanov, G.M. Tino, G. Ferrari, Nat. Phys. 5, 547 (2009).Google Scholar
  12. 12.
    E. Haller, R. Hart, M.J. Mark, J.G. Danzl, L. Reichsöllner, H.-C. Nägerl, Phys. Rev. Lett. 104, 200403 (2010).ADSGoogle Scholar
  13. 13.
    N. Goldman, J. Dalibard, Phys. Rev. X 4, 031027 (2014).Google Scholar
  14. 14.
    S. Lellouch, N. Goldman, Quantum, Sci. Technol. 3, 024011 (2018).Google Scholar
  15. 15.
    D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976).ADSGoogle Scholar
  16. 16.
    M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, I. Bloch, Phys. Rev. Lett. 107, 255301 (2011).ADSGoogle Scholar
  17. 17.
    M. Aidelsburger, M. Atala, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Phys. Rev. Lett. 111, 185301 (2013).ADSGoogle Scholar
  18. 18.
    H. Miyake, G.A. Siviloglou, C.J. Kennedy, W.C. Burton, W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013).ADSGoogle Scholar
  19. 19.
    M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J.T. Barreiro, S. Nascimbène, N.R. Cooper, I. Bloch, N. Goldman, Nat. Phys. 11, 162 (2015).Google Scholar
  20. 20.
    F.D.M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).ADSMathSciNetGoogle Scholar
  21. 21.
    G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, T. Esslinger, Nature 515, 237 (2014).ADSGoogle Scholar
  22. 22.
    J. Struck, C. Ölschläger, R. Le Targat, P. Soltan-Panahi, A. Eckardt, M. Lewenstein, P. Windpassinger, K. Sengstock, Science 333, 996 (2011).ADSGoogle Scholar
  23. 23.
    J. Struck, M. Weinberg, C. Ölschläger, P. Windpassinger, J. Simonet, K. Sengstock, R. Höppner, P. Hauke, A. Eckardt, M. Lewenstein, L. Mathey, Nat. Phys. 9, 738 (2013).Google Scholar
  24. 24.
    M.C. Fischer, K.W. Madison, Q. Niu, M.G. Raizen, Phys. Rev. A 58, R2648(R) (1998).ADSGoogle Scholar
  25. 25.
    M. Weinberg, C. Ölschläger, C. Sträter, S. Prelle, A. Eckardt, K. Sengstock, J. Simonet, Phys. Rev. A 92, 043621 (2015).ADSGoogle Scholar
  26. 26.
    P. Cheiney, C.M. Fabre, F. Vermersch, G.L. Gattobigio, R. Mathevet, T. Lahaye, D. Guéry-Odelin, Phys. Rev. A 87, 013623 (2013).ADSGoogle Scholar
  27. 27.
    D. Hu, L. Niu, S. Jin, X. Chen, G. Dong, J. Schmiedmayer, X. Zhou, Commun. Phys. 1, 29 (2018).Google Scholar
  28. 28.
    M. Lacki, J. Zakrzewski, Phys. Rev. Lett. 110, 065301 (2013).ADSGoogle Scholar
  29. 29.
    C.V. Parker, L.-C. Ha, C. Chin, Nat. Phys. 9, 769 (2013).Google Scholar
  30. 30.
    W. Zheng, B. Liu, J. Miao, C. Chin, H. Zhai, Phys. Rev. Lett. 113, 155303 (2014).ADSGoogle Scholar
  31. 31.
    L.W. Clark, L. Feng, C. Chin, Science 354, 606 (2016).ADSMathSciNetGoogle Scholar
  32. 32.
    B.M. Anderson, L.W. Clark, J. Crawford, A. Glatz, I.S. Aranson, P. Scherpelz, L. Feng, C. Chin, K. Levin, Phys. Rev. Lett. 118, 220401 (2017).ADSGoogle Scholar
  33. 33.
    N. Fläschner, M. Tarnowski, B.S. Rem, D. Vogel, K. Sengstock, C. Weitenberg, Phys. Rev. A 97, 051601 (2018).ADSGoogle Scholar
  34. 34.
    B.P. Holder, L.E. Reichl, Phys. Rev. A 76, 013420 (2007).ADSGoogle Scholar
  35. 35.
    P.L. Pedersen, M. Gajdacz, N. Winter, A.J. Hilliard, J.F. Sherson, J. Arlt, Phys. Rev. A 88, 023620 (2013).ADSGoogle Scholar
  36. 36.
    C. Zhuang, C.R. Paul, X. Liu, S. Maneshi, L.S. Cruz, A.M. Steinberg, Phys. Rev. Lett. 111, 233002 (2013).ADSGoogle Scholar
  37. 37.
    L. Niu, D. Hu, S. Jin, X. Dong, X. Chen, X. Zhou, Opt. Express 23, 10064 (2015).ADSGoogle Scholar
  38. 38.
    S. Choudhury, E.J. Mueller, Phys. Rev. A 90, 013621 (2014).ADSGoogle Scholar
  39. 39.
    T. Bilitewski, N.R. Cooper, Phys. Rev. A 91, 033601 (2015).ADSMathSciNetGoogle Scholar
  40. 40.
    M. Reitter, J. Näger, K. Wintersperger, C. Sträter, I. Bloch, A. Eckardt, U. Schneider, Phys. Rev. Lett. 119, 200402 (2017).ADSGoogle Scholar
  41. 41.
    S. Lellouch, M. Bukov, E. Demler, N. Goldman, Phys. Rev. X 7, 021015 (2017).Google Scholar
  42. 42.
    T. Boulier, J. Maslek, M. Bukov, C. Bracamontes, E. Magnan, S. Lellouch, E. Demler, N. Goldman, J.V. Porto, Phys. Rev. X 9, 011047 (2019).Google Scholar
  43. 43.
    D.A. Steck, W.H. Oskay, M.G. Raizen, Science 293, 274 (2001).ADSGoogle Scholar
  44. 44.
    W.K. Hensinger, H. Häffner, A. Browaeys, N.R. Heckenberg, K. Helmerson, C. McKenzie, G.J. Milburn, W.D. Phillips, S.L. Rolston, H. Rubinsztein-Dunlop, B. Upcroft, Nature 412, 52 (2001).ADSGoogle Scholar
  45. 45.
    R. Dubertrand, J. Billy, D. Guéry-Odelin, B. Georgeot, G. Lemarié, Phys. Rev. A 94, 043621 (2016).ADSGoogle Scholar
  46. 46.
    B. Wu, Q. Niu, Phys. Rev. 64, 061603 (2001).Google Scholar
  47. 47.
    D. Diakonov, L.M. Jensen, C.J. Pethick, H. Smith, Phys. Rev. 66, 013604 (2002).ADSGoogle Scholar
  48. 48.
    M. Machholm, C.J. Pethick, H. Smith, Phys. Rev. 67, 053613 (2003).ADSGoogle Scholar
  49. 49.
    S.B. Koller, E.A. Goldschmidt, R.C. Brown, R. Wyllie, R.M. Wilson, J.V. Porto, Phys. Rev. A 94, 063634 (2016).ADSGoogle Scholar
  50. 50.
    A. Fortun, C. Cabrera-Gutiérrez, G. Condon, E. Michon, J. Billy, D. Guéry-Odelin, Phys. Rev. Lett. 117, 010401 (2016).ADSGoogle Scholar
  51. 51.
    C. Cabrera-Gutiérrez, E. Michon, V. Brunaud, T. Kawalec, A. Fortun, M. Arnal, J. Billy, D. Guéry-Odelin, Phys. Rev. A 97, 043617 (2018).ADSGoogle Scholar
  52. 52.
    C. Sträter, A. Eckardt, Z. Naturforsch, A 71, 909 (2016).Google Scholar
  53. 53.
    P. Pedri, L. Pitaevskii, S. Stringari, C. Fort, S. Burger, F.S. Cataliotti, P. Maddaloni, F. Minardi, M. Inguscio, Phys. Rev. Lett. 87, 220401 (2001).ADSGoogle Scholar
  54. 54.
    Z. Hadzibabic, S. Stock, B. Battelier, V. Bretin, J. Dalibard, Phys. Rev. Lett. 93, 180403 (2004).ADSGoogle Scholar
  55. 55.
    J. Li, Y. Yu, A.M. Dudarev, Q. Niu, New J. Phys. 8, 154 (2006).ADSGoogle Scholar
  56. 56.
    B. Wu, Q. Niu, New J. Phys. 5, 104 (2003).ADSGoogle Scholar
  57. 57.
    L. Pitaevskii, S. Stringari, B. Einstein, Condensation and Superfluidity (Oxford University Press, New York, NY, 2016).Google Scholar
  58. 58.
    M. Greiner, I. Bloch, O. Mandel, T.W. Hänsch, T. Esslinger, Phys. Rev. Lett. 87, 160405 (2001).ADSGoogle Scholar
  59. 59.
    J.H. Denschlag, J.E. Simsarian, H. Häffner, C. McKenzie, A. Browaeys, D. Cho, K. Helmerson, S.L. Rolston, W.D. Phillips, J. Phys. B 35, 3095 (2002).ADSGoogle Scholar
  60. 60.
    M. Kohl, H. Moritz, T. Stoferle, K. Gunter, T. Esslinger, Phys. Rev. Lett. 94, 080403 (2005).ADSGoogle Scholar
  61. 61.
    S.S. Natu, D.C. McKay, B. DeMarco, E.J. Mueller, Phys. Rev. A 85, 061601 (2012).ADSGoogle Scholar
  62. 62.
    X. Antoine, R. Duboscq, Comput. Phys. Commun. 185, 2969 (2014).ADSGoogle Scholar
  63. 63.
    X. Antoine, R. Duboscq, Comput. Phys. Commun. 193, 95 (2015).ADSGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Citlali Cabrera-Gutiérrez
    • 1
    • 2
  • Eric Michon
    • 1
    • 2
  • Maxime Arnal
    • 1
    • 2
  • Gabriel Chatelain
    • 1
    • 2
  • Vincent Brunaud
    • 1
    • 2
  • Tomasz Kawalec
    • 3
  • Juliette Billy
    • 1
    • 2
  • David Guéry-Odelin
    • 1
    • 2
    Email author
  1. 1.Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMCToulouseFrance
  2. 2.CNRS, UMR 5589ToulouseFrance
  3. 3.Marian Smoluchowski Institute of Physics, Jagiellonian UniversityKrakówPoland

Personalised recommendations